
MSCP Basic Disk Functions Manual
AA-L619A-TK Version 1.2

A part of UDA50 Programmer's
Doc. Kit
QP-905-GZ

First Edition

April, 1982

 Copyright (c) 1982, Digital Equipment Corporation

 All Rights Reserved

The reproduction of this material, in part or in whole, is

strictly prohibited. For copy information, contact the

Educational Services Department, Bedford, Massachusetts, 01730.

Digital Equipment Corporation makes no representation that the

interconnection of its products in a manner described herein will

not infringe existing or future patent rights, nor do the

descriptions contained herein imply the granting of licenses to

make, use, or sell equipment or software constructed or drafted

in accordance with the description.

The information in this document is for informational purposes

only and is subject to change without notice by Digital Equipment

Corporation.

Digital Equipment Corporation assumes no responsibility for any

errors which may appear in this document.

The major trademarks of Digital Equipment Corporation are:

 DEC VT IAS

 DECUS DECsystem-10 MASSBUS

 DECMATE DECSYSTEM-20 WORKPROCESSOR

 DECnet DECwriter RSTS

 PDP DIBOL RSX

 UNIBUS EduSystem VMS

 VAX

 | | | | | | | |

 and the Digital logo: |d|i|g|i|t|a|l|

 | | | | | | | |

Table of contents Page 1

CHAPTER 1 INTRODUCTION

 1.1 Overview of MSCP Subsystem 1-1

 1.2 Purpose . 1-3

 1.3 Method of Presentation 1-3

 1.4 Scope . 1-3

CHAPTER 2 TERMINOLOGY

CHAPTER 3 CLASS DRIVER / MSCP SERVER COMMUNICATIONS

 3.1 Connection . 3-1

 3.2 Flow Control 3-2

 3.3 Class Driver Responsibilities 3-5

 3.4 MSCP Server Responsibilities 3-6

CHAPTER 4 ALGORITHM AND USAGE RULES

 4.1 Controller States 4-1

 4.2 Controls and Indicators 4-4

 4.3 Unit States 4-5

 4.4 Unit Numbers 4-12

 4.5 Command Categories and Execution Order 4-15

 4.6 Class Driver / MSCP Server Synchronization . . . 4-17

 4.7 Class Driver Error Recovery 4-18

 4.8 This section deliberately omitted. 4-19

 4.9 Host Access Timeouts 4-19

 4.10 Command Timeouts 4-22

 4.11 Disk Geometry and Format 4-25

 4.12 Bad Block Replacement 4-30

 4.13 Write Protection 4-31

 4.14 Compare Operations 4-32

 4.15 Multi-Unit Drives and Formatters 4-34

 4.16 Controller and Unit Identifiers 4-36

 4.17 Media Type Identifiers 4-37

CHAPTER 5 MSCP CONTROL MESSAGE FORMAT

 5.1 Generic Control Message Format 5-1

 5.2 Reserved and Undefined Fields 5-3

 5.3 Transfer Command Message Format 5-5

 5.4 Command Modifiers 5-7

 5.5 End Message Format 5-9

 5.6 Status Codes 5-12

 5.7 Unit Flags 5-17

 5.8 Controller Flags 5-18

CHAPTER 6 MINIMAL DISK MSCP SUBSET

 6.1 This section deliberately omitted 6-1

Table of contents Page 2

 6.2 This section deliberately omitted 6-2

 6.3 ABORT Command 6-3

 6.4 ACCESS Command 6-5

 6.5 AVAILABLE Command 6-7

 6.6 This section deliberately omitted 6-10

 6.7 COMPARE HOST DATA Command 6-11

 6.8 DETERMINE ACCESS PATHS Command 6-13

 6.9 ERASE Command 6-15

 6.10 This section deliberately omitted 6-17

 6.11 GET COMMAND STATUS Command 6-18

 6.12 GET UNIT STATUS Command 6-21

 6.13 ONLINE Command 6-26

 6.14 READ Command 6-32

 6.15 REPLACE Command 6-34

 6.16 SET CONTROLLER CHARACTERISTICS Command 6-36

 6.17 SET UNIT CHARACTERISTICS Command 6-39

 6.18 WRITE Command 6-44

 6.19 Invalid Command End Message 6-46

 6.20 ACCESS PATH Attention Message 6-47

 6.21 AVAILABLE Attention Message 6-48

 6.22 DUPLICATE UNIT NUMBER Attention Message 6-51

CHAPTER 7 DISK MSCP OPTIONS

CHAPTER 8 MSCP ERROR LOG MESSAGE FORMATS

 8.1 Introduction 8-1

 8.2 Generic Error Log Message Format 8-4

 8.3 Controller Errors 8-8

 8.4 Host Memory Access Errors with Bus Address 8-9

 8.5 Disk Transfer Errors 8-10

 8.6 SDI Errors 8-12

APPENDIX A OPCODE, FLAG, AND OFFSET DEFINITIONS

APPENDIX B STATUS AND EVENT CODE DEFINITIONS

APPENDIX C CONTROLLER, UNIT, AND MEDIA TYPE IDENTIFIER VALUES

APPENDIX D BUFFER DESCRIPTOR FORMATS

 CHAPTER 1

 INTRODUCTION

1.1 Overview of MSCP Subsystem

Mass Storage Control Protocol (MSCP) is the protocol used by a

family of mass storage controllers and devices designed and built

by Digital Equipment Corporation. In a system that uses an MSCP

storage subsystem, the controller contains intelligence to

perform the detailed I/O handling tasks. This arrangement allows

the host to simply send command messages (requests for reads or

writes) to the controller and receive response messages back from

the controller. The host does not concern itself with details

such as device type, media geometry, media format, error

recovery, etc.

The host uses two levels of software to accomplish its tasks.

The higher level is called a "class driver". The class driver’s

knowledge of devices is limited to the device class (such as

disks) and their capacity. The class driver does not have to

know the detailed nature of the communications link (I/O bus),

controller, or devices that are being used.

The second level of host software is called a "port driver". The

port driver passes messages to/from the communications link or

bus. It is not aware of the messages’ meaning. The port driver

does have to know the exact nature of the communications link or

bus (communications mechanism).

In the controller architecture, there are also two levels of

software. The lower of these two is also a "port driver" and,

like the port driver in the host, is concerned only with passing

messages on and off of the bus. The higher level of controller

software is the "MSCP Server". It constitutes the intelligence

of the controller and therefore defines the functionality of the

controller.

The MSCP server concerns itself with determining the number of

devices, their type, geometry, unit number, availability, status,

etc. The MSCP server receives requests from the host and sends

responses to the host. It optimizes the requests, performs the

operations, transfers the data to/from the host, transfers the

data to/from the device, and buffers the data as necessary. The

Introduction Page 1-2

1.1 Overview of MSCP Subsystem

MSCP server performs error detection and recovery, and reports

any significant errors to the host.

Because the MSCP server handles the error detection and recovery

by itself, the host sees a "perfect media", an important

characteristic of an MSCP subsystem. That is, the host need only

report errors to higher level (user) software, as the MSCP server

performs all error recovery and media defect (bad block)

handling.

The host’s class driver and the controller’s MSCP server route

their messages through the path of the two port drivers and a

hardware interconnect. This is their physical connection.

However, their logical communication is a direct connection

because the port driver details are below their level of concern.

Therefore, there are two paths to consider, a physical message

path and a logical MSCP connection. This is illustrated in

Figure 1.

 Host Mass Storage Controller

 + - - - - - - - - + + - - - - - - - - +

 | | | |

 +-----------+ +-----------+

 | | Class | | MSCP | | MSCP | |

 | Driver | <------------------> | Server |

 | +-----------+ | | +-----------+ |

 A A

 | | | | | |

 V V

 | +-----------+ | Communications | +-----------+ |

 | Port | <------------------> | Port |

 | | Driver | | Protocols | | Driver | |

 +-----------+ +-----------+

 | A | | A |

 + - - - -|- - - - + + - - - -|- - - - +

 | |

 V V

 +--+

 | Port | | Port |

 | - - + + - - |

 | Communications Mechanism |

 | |

 +--+

 Figure 1 Example System

In summary, an MSCP subsystem is characterized by an intelligent

controller that provides the host with the view of perfect media.

It is further characterized by host independence from a specific

bus, controller, or device type.

Introduction Page 1-3

1.2 Purpose

1.2 Purpose

The purpose of this manual is to provide information on the rules

of MSCP to the detail necessary for writing a host class driver.

1.3 Method of Presentation

The method of presentation used in this manual is:

 o to define new terms and concepts.

 o list the responsibilities of the class driver.

 o list the responsibilities of the MSCP server that are

 applicable to the class driver.

 o list the responsibilities of the storage unit that are

 applicable to the class driver.

 o explain each command and response message.

 o explain each error message.

 o provide appropriate tables of consolidated information.

1.4 Scope

The scope of this manual is limited to the details of the MSCP

itself and does not provide information on any specific type of

host processor or any specific operating system. It does not

assume any particular bus, controller, device type, host, or port

driver implementation.

 CHAPTER 2

 TERMINOLOGY

Command Categories

 All MSCP commands fall into one of four command categories:

 Immediate commands, Non-Sequential commands, Sequential

 commands, and Special commands. Each command category has

 certain constraints on when those commands may be executed,

 thus limiting the scope of controller optimizations. See

 Section "Command Categories end Execution Order".

Controller Timeout Interval

 A time interval, measured in seconds, supplied by the

 controller or MSCP server in the SET CONTROLLER

 CHARACTERISTICS command’s end message. Controllers or MSCP

 servers guarantee that they will complete all Immediate

 commands plus some measurable amount of useful work on their

 oldest outstanding non-Immediate command within the

 controller timeout interval. See Section "Command Timeouts".

Forced Error

 A data error (in a disk block) that has been deliberately

 caused by use of the "Force Error" command modifier. Used to

 indicate that the data in the block is of questionable

 validity. For example, an unrecoverable error occurred when

 the data was copied from some other block.

Forced Error Indicator

 The logical flag, present in each disk block, used to record

 the presence of a Forced Error. Depending upon the detailed,

 low level format of the disk device, this may be implemented

 either as an actual bit flag or as a special pattern (such as

 the complement of the normal value) of error correcting

 and/or error detecting codes.

Terminology Page 2-2

Immediate Commands

 Commands that MSCP servers should execute immediately,

 without waiting for any other commands to complete.

 Immediate commands are typically status inquiries, and must

 be completed within the controller timeout interval.

Non-Sequential Commands

 Commands whose execution order MSCP servers may rearrange, in

 order to optimize performance. The optimization may not move

 a non-sequential command past the barrier imposed by a

 sequential command.

Nugatory

 Of little or no consequence: Trifling, Inconsequential. See

 Section "AVAILABLE Command"

Sequential Commands

 Commands that MSCP servers must execute in the exact order

 that they were received from class drivers. Sequential

 commands typically change a unit’s state or context.

Special Commands

 Commands that have both the execution order constraints of

 non-sequential commands plus certain special, command

 dependent execution order constraints.

 CHAPTER 3

 CLASS DRIVER / MSCP SERVER COMMUNICATIONS

3.1 Connection

Host class drivers use the host port driver to communicate with

MSCP servers in controllers. MSCP servers similarly use the

controller port driver to communicate with class drivers in

hosts. This communication takes place across a link called a

connection.

The state of the connection is directly equivalent to the state

of the controller or MSCP server with respect to the class

driver. The controller is "Controller-Online" if and only if the

connection is established and functioning. The controller is

"Controller-Available" if the connection is not established, but

it is believed that it could be established. The controller is

"Controller-Offline" if the connections is not established and it

is believed that it cannot be established.

Three types of communications services are used across the

connection between a class driver and an MSCP server:

 o A sequential message communications service, used for

 MSCP control messages. This service guarantees

 sequential, duplicate free delivery for all messages

 sent across the same connection. This service must

 support messages of at least 48 bytes in length.

 o A datagram communication service, used for MSCP error

 log messages. This service must deliver messages sent

 on it with very high probability; messages may be

 delivered out of sequence, lost, or duplicated, but the

 probability of any of these occurring must be very low.

 This service must support messages of at least 384 bytes

 in length.

 o A block data communication service, used to move data

 between hosts and mass storage controllers. This

 service provides a reliable, efficient method of

 transferring the contents of a named buffer in one

 subsystem to a named buffer in another subsystem.

 Buffers are identified by buffer descriptors, which

Class Driver / MSCP Server Communications Page 3-2

3.1 Connection

 identify both the buffer and the subsystem (host) in

 which the buffer resides.

The communications mechanism or port drivers discard all messages

that, at the time a connection is terminated, have been sent or

queued to be sent via the sequential message and datagram

services but have not yet been delivered. Block data transfers

may or may not be aborted when a connection is terminated; if

aborted, they may have already been partially completed. Block

data transfers from a previous incarnation of a connection are

guaranteed to be aborted when the connection is re-established.

Besides using these three communications services directly, MSCP

uses the establishment of the connection itself to synchronize

class drivers and MSCP servers. Either the class driver or the

MSCP server will terminate the connection between them (become

"Controller-Available") if it determines that they must

re-synchronize with each other. Events that require class driver

/ MSCP server re-synchronization include certain errors or loss

of context by either process. The connection is also terminated,

by a port driver, if an unrecoverable communications error

occurs. Termination of the connection signals the processes that

re-synchronization is necessary; the re-synchronization is

accomplished by each process discarding all context regarding

outstanding commands or transactions, after which a new

connection is established.

Following re-synchronization, commands which were outstanding

before the re-synchronization was performed may have completed to

an indeterminate extent. Such commands may have never been

started, may have been partially completed, or may have been

fully completed. The only guarantee is that they are no longer

outstanding, implying that the controller is no longer performing

work for them and that the class driver will not receive an end

message for them. The fact that the controller is no longer

performing work for them implies that no state changes or

modification of data will take place as a result of such

commands.

3.2 Flow Control

Especially critical to MSCP is the concept of flow control and

the flow control based requirements that MSCP imposes on class

drivers and MSCP servers. These items are discussed below.

Flow control arises from the need to avoid the congestion and/or

deadlock which can occur if one process sends messages too

quickly to another process. The receiving process must have

buffers in which to place the incoming messages; when all such

buffers are full, additional messages cannot be handled.

Class Driver / MSCP Server Communications Page 3-3

3.2 Flow Control

The datagram communications service does not use flow control.

If no buffers are available, incoming datagrams will be

discarded. Thus the characteristic that the datagram service

does not guarantee delivery, instead only assuring a high

probability of delivery. This high probability is dependent upon

the receiver (i.e., the class driver) always having buffers

queued for incoming datagrams.

The sequential message communications service does use flow

control. When a potential receiving process queues a buffer for

receiving messages on a connection, the presence of this buffer

is communicated (via the underlying communications service) to

the potential sending process at the other end of the connection.

This message notifying the potential sending process of the

queued buffer grants the sending process a credit, which is the

privilege to send a message. Therefore messages will only be

sent when the sending process knows that the receiving process

has queued a buffer into which the message can be received,

ensuring that the receiving process will be able to handle the

message.

A typical implementation of flow control will be somewhat as

follows. The port driver maintains a counter on behalf of each

process participating in a connection. That counter holds the

process’s current credit balance -- i.e., the number of receive

buffers that its partner has queued less the number of messages

that it has sent. Every time the process’s partner queues a

receive buffer, a message is sent causing the counter to be

incremented. Every time the process sends a message, the counter

is decremented. Messages may only be sent when the counter

(credit balance) is greater than zero, thus guaranteeing that the

counter will never be negative. Indeed, we will see later that

some messages require that the counter be greater than a

threshold larger than zero.

Due to the inherent asynchrony of communications between multiple

processes or subsystems, revoking or canceling a previously

queued receive buffer is not straightforward. The problem is

that the buffer cannot be revoked and returned to the receiving

process until after the sending process has acknowledged its

revocation, as otherwise the sending process may attempt to send

a message that requires the revoked buffer. Therefore the

algorithm for revoking receive buffers is as follows:

 1. The revoking process (the process which originally

 queued the receive buffers) requests that some number of

 buffers be revoked.

 2. The revocation request is communicated to the revoking

 process’s partner (actually to its port driver).

Class Driver / MSCP Server Communications Page 3-4

3.2 Flow Control

 3. The revoking process’s partner (actually its port

 driver) compares the number of buffers to be revoked

 against its current credit balance and a threshold. If

 the requested number of buffers / credits can be revoked

 (i.e., subtracted from the credit balance) without

 lowering the credit balance below the threshold, then

 all of them will be revoked. Otherwise, if the credit

 balance is above the threshold, it is set to the

 threshold and the difference between its former value

 and the threshold is the number of buffers / credits

 actually revoked. If the credit balance is already at

 or below the threshold, then it stays the same and no

 buffers / credits are revoked.

 4. The actual number of buffers / credits revoked is

 communicated back to the revoking process’s port driver.

 5. The revoking process’s port driver returns the buffers

 actually revoked to the revoking process.

If a threshold of zero is used, the revoking or receiving

process can always get back all of its buffers. The fact that an

attempted revocation failed implies that the buffers have already

been returned to the process, since messages have been received

into them.

The above algorithm uses a threshold to prevent revocation below

some lower limit. The mechanism by which this threshold is

obtained is not critical to either MSCP or to the above

algorithm. The rules below are phrased as if the threshold were

supplied by the revoking process as part of the revocation

request. This is purely to simplify the wording of those rules;

often the thresholds will be constants determined when a

connection is established. In such an implementation a

threshold of zero should be used when the class driver is

revoking credits it has granted to the MSCP server and a

threshold of one should be used when the MSCP server is revoking

credits it has granted to the class driver.

MSCP is only concerned with credits required by the sequenced

message service. Some communications services may require

credits for the block data communication service as well. Any

such credits are invisible to MSCP, being communications service

dependent, and must be provided in addition to the credits

required by the rules below.

Note that the above discussion merely describes a conceptual

model for flow control within the sequential message

communications service. There is no requirement that flow

control actually be implemented this way, provided that the

results are the same. For example, almost all implementations

will carry credit information in a header added to messages and

processed by the receiving process’s port driver, rather than

communicating credits with separate messages. Some extremely

Class Driver / MSCP Server Communications Page 3-5

3.2 Flow Control

well behaved communications mechanisms may not need to implement

explicit flow control at all, since the underlying communications

mechanism may provide it implicitly.

3.3 Class Driver Responsibilities

Given the above model for flow control, we can state the

requirements MSCP places on class drivers and MSCP servers.

Class drivers must obey the following rules:

 1. All MSCP commands fall into one of several categories;

 for this discussion we distinguish between Immediate

 commands (one specific command category) and

 non-Immediate commands (the union of all other command

 categories). When the class driver’s credit balance is

 zero, the class driver may not issue any commands. When

 it is one, the class driver may only issue Immediate

 commands. When it is two or larger, the class driver

 may issue both Immediate and non-Immediate commands. If

 the class driver’s credit balance is one and there is a

 GET COMMAND STATUS command waiting to be issued for the

 command timeout algorithm, then the class driver must

 issue that GET COMMAND STATUS command as the next

 command.

 In essence, this rule means that the class driver must

 reserve one credit for the exclusive use of the command

 timeout algorithm. This credit may be "borrowed" for

 issuing Immediate commands, since such command always

 complete quickly. The goal is to guarantee that the

 command timeout algorithm will always be able to

 promptly issue a GET COMMAND STATUS command.

 2. The class driver must queue a receive buffer for each

 command that it sends to an MSCP server. The receive

 buffer will be used to hold the command’s end message.

 The receive buffer must be queued either before the

 command is sent or as part of an atomic (indivisible)

 action that includes sending the command. The important

 point is that the MSCP server must receive the credit

 for the receive buffer either before or concurrently

 with receiving the command.

 3. In addition to queuing receive buffers for end

 messages, class drivers that enable attention messages

 must queue at least one receive buffer in which to

 receive attention messages. Such a receive buffer must

 be queued before the class driver enables attention

 messages -- i.e., before the class driver sends a SET

 CONTROLLER CHARACTERISTICS command that enables

 attention messages. Additional receive buffers may be

 queued at any time.

Class Driver / MSCP Server Communications Page 3-6

3.3 Class Driver Responsibilities

 4. Upon receiving an attention message, the class driver

 must immediately queue another (or the same) receive

 buffer back for more attention messages. The only

 resource that the class driver may require between

 receiving an attention message and queuing another

 receive buffer is host CPU cycles; the class driver may

 not require that it be able to send or receive any other

 messages or wait for any I/O to complete before queuing

 another receive buffer. This effectively requires that

 all code and data structures needed to process attention

 messages must be permanently resident in physical

 memory, so that an incoming attention message can be

 immediately processed and the buffer in which it was

 received immediately re-queued.

 5. With one exception, the class driver must never revoke

 receive buffers. The one exception is after disabling

 attention messages -- i.e., after receiving the end

 message for the SET CONTROLLER CHARACTERISTICS command

 that disabled attention messages. At that time the

 class driver may revoke as many buffers as it has queued

 for attention messages (i.e., total number of buffers

 queued less number of outstanding commands). This

 revocation should specify a threshold of zero. Note

 that this revocation is guaranteed to succeed if the

 MSCP server is operating correctly.

Failure of a class driver to follow the above rules may lead to

controller deadlock, command timeouts, or the controller not

obeying its rules given below. Any connection or process in the

controller’s subsystem may be affected, rather than just the MSCP

server with which the class driver is communicating. Note that

class drivers that enable error logging must also keep datagram

buffers queued so that they can receive error log messages. Not

keeping datagram buffers queued may result in loss of error log

messages.

3.4 MSCP Server Responsibilities

The rules for MSCP servers vary depending upon certain

characteristics of the server. There is one general set of

rules, plus a simplification that certain classes of servers may

follow. In all cases, an MSCP server’s implementation of these

rules may require, for its correct operation (and thus adherence

to these rules), that class drivers correctly follow the rules

given for them above. The general set of rules, which must be

followed by all MSCP servers that aren’t in any of the special

cases identified later, are as follows:

Class Driver / MSCP Server Communications Page 3-7

3.4 MSCP Server Responsibilities

 1. So long as it is "Controller-Online" to a class driver,

 an MSCP server must ensure that the sum of the number of

 commands that are outstanding from that class driver

 plus the number of unused receive buffers / credits that

 it has granted to that class driver is never lower than

 the values given below. That is, the sum of the actual

 and potential outstanding commands must be at least the

 values below. Between the time that the controller

 becomes "Controller-Online" and the completion of the

 first SET CONTROLLER CHARACTERISTICS command, this sum

 must be at least one. Following the completion of the

 first SET CONTROLLER CHARACTERISTICS command, and so

 long as the controller remains "Controller-Online", this

 sum must be at least two. The first unit of this sum

 allows the class driver to issue Immediate commands;

 any excess, beyond the value one, can be used to issue

 "real" commands such as data transfers. Note that these

 requirements imply that, following a SET CONTROLLER

 CHARACTERISTICS command, the MSCP server must either

 grant a minimum of two receive buffers / credits to the

 class driver or else terminate the connection (become

 "Controller-Available") with the class driver.

 2. So long as it is "Controller-Online" to a class driver,

 an MSCP server must ensure that the sum of the number of

 immediate commands that are outstanding from that class

 driver plus the number of unused receive buffers /

 credits that it has granted to that class driver is

 always at least one. That is, the sum of the actual and

 potential outstanding Immediate commands must be at

 least one. This is in addition to requirement 1 above.

 3. An MSCP server may revoke receive buffers or credits at

 any time so long as it continues to meet requirements 1

 and 2 above. Note that, in order to meet requirement 2,

 the sum of the threshold used for the revoke request

 plus the number of outstanding Immediate commands (from

 that class driver) must be at least one. This

 restriction will typically be met by always using a

 threshold of one.

 4. An MSCP server must keep track of the excess, if any, of

 its credit balance over the number of outstanding

 commands. The server may only issue attention messages

 when this excess is greater than zero. Attention

 messages that cannot be issued immediately should be

 saved until credits are available with which to issue

 them. The controller must continue to accept new

 commands, process outstanding commands, and issue end

 messages for completed commands while attention messages

 are being saved. If the conditions that triggered the

 generation of an attention message disappear before that

 attention message can be issued (sent), then the

 attention message may or may not still have to be sent;

Class Driver / MSCP Server Communications Page 3-8

3.4 MSCP Server Responsibilities

 see the individual attention message descriptions.

 End messages for all types of commands should be issued

 as soon as the command completes. Note that the rules

 for class drivers ensure that the MSCP server always has

 sufficient credits with which to issue end messages, so

 the MSCP server need not check its credit balance before

 issuing end messages.

MSCP servers that limit the rate at which they generate attention

messages can replace rule 4 above with a simpler rule. This

alternate rule may be used, at the server’s option, by any MSCP

server that will generate no more than an average of two

attention messages per second, averaged over the controller

timeout interval (see Section "Command Timeouts"). That is, if

the controller timeout interval is N seconds, then the server

will generate no more than N*2 attention messages within any N

second period. The MSCP server may assume, in determining its

maximum attention message rate, that human operators do not

engage in pathological activity. That is, it may assume that

cases such as an operator continuously actuatign the Run/Stop

switches on one or more drives will never occur. Any MSCP server

that can meet this attention message rate restriction can

substitute the following alternate rule for rule 4 above:

 4’. An MSCP server may issue attention messages and end

 messages whenever its credit balance is greater than

 zero. Attention messages and end messages that cannot

 be issued immediately should be saved until credits are

 available with which to issue them. If the conditions

 that triggered the generation of an attention message

 disappear before the attention message can be issued

 (sent), then that attention message may or may not still

 have to be sent; see the individual attention message

 descriptions. Saved end messages must always be sent,

 unless the MSCP server first becomes

 "Controller-Available" (i.e., terminates its connections

 with the class driver), in which case the saved end

 messages must not be sent. Note that end messages must

 always be sent in the order that their corresponding

 commands completed.

 An MSCP server may deadlock or cease operating on a

 connection whenever it has saved attention messages or

 end messages waiting to be issued on that connection.

 The only operations that it must perform when it has

 such messages waiting is to accept incoming credit

 notifications, send the waiting messages when credits

 become available, and resume normal operation when all

 waiting messages have been sent. Note that accepting

 incoming credit notifications will often require that

 the MSCP server also accept new commands, although it

 need not begin processing of those new commands until

Class Driver / MSCP Server Communications Page 3-9

3.4 MSCP Server Responsibilities

 all waiting messages have been sent. Note also that

 only the one MSCP server may deadlock or cease

 operating; other processes (i.e., other MSCP servers)

 in the same subsystem or controller and other

 connections to the same MSCP server must not be

 affected.

 CHAPTER 4

 ALGORITHMS AND USAGE RULES

4.1 Controller States

The controller may be in any of three states relative to a host

class driver. The controller may be in a different state

relative to each host or each class driver. The controller

states are:

Controller-Offline

 A controller is "Controller-Offline" to a class driver

 whenever it is not available to that class driver and cannot

 perform any operations on its behalf. Possible causes

 include inoperative hardware or an operator disabling the

 controller. A controller is "Controller-Offline" exactly

 when it is not possible to establish a connection between the

 class driver and the MSCP server within the controller. Note

 that a controller may be "Controller-Offline" to some of a

 host’s class drivers yet be "Controller-Available" or

 "Controller-Online" to others.

Controller-Available

 A controller is "Controller-Available" to a class driver

 whenever it could perform operations for that class driver

 but the driver has not yet synchronized with the controller.

 A controller is "Controller-Available" exactly when it would

 be possible to establish a connection between the class

 driver and the MSCP server within the controller, but no

 connection has yet been established.

Controller-Online

 A controller is "Controller-Online" to a class driver

 whenever it can both perform operations for that class driver

 and the driver has synchronized with the controller. A

 controller is "Controller-Online" exactly when a connection

 exists between the class driver and the MSCP server within

 the controller. This is the state used for normal operation.

Algorithms and Usage Rules Page 4-2

4.1 Controller States

Strictly speaking, the term "controller state" is a misnomer.

The states described above actually exist between an individual

class driver and an individual MSCP server. A host may have

several class drivers and a controller subsystem may have several

MSCP servers. Note also that the controller state (MSCP server

state?) is distinct from the state of any units connected to the

controller.

An MSCP server (controller) enters the "Controller-Offline" state

relative to a host whenever the MSCP server ceases to function or

otherwise becomes unable to perform operations for the host.

Possible causes include:

 1. Controller hardware, software, or power failure.

 2. Controller initialization, either requested or

 spontaneous.

 3. An operator (typically Field Service) disables all or

 part of the controller.

 4. Communications mechanism failures.

 5. The controller has not been built yet, the controller is

 still in its shipping crate, or it has otherwise not yet

 been installed.

An MSCP server enters the "Controller-Available" state relative

to a host class driver when:

 1. The controller or MSCP server is "Controller-Offline",

 and all causes of it being "Controller-Offline" are

 removed.

 2. The MSCP server is "Controller-Online", and the MSCP

 server cannot successfully send a control message (i.e.,

 an MSCP end or attention message) to the host class

 driver.

 3. The MSCP server is "Controller-Online", and the host

 access timeout expires (see Section "Host Access

 Timeouts").

 4. The MSCP server is "Controller-Online", and the MSCP

 server receives an invalid command from the host. Note

 that this transition to "Controller-Available" is

 optional, and therefore controller dependent.

 5. The host class driver terminates the connection between

 the class driver and the MSCP server.

Algorithms and Usage Rules Page 4-3

4.1 Controller States

 6. A port driver or the communications mechanism terminates

 the connection between the class driver and the MSCP

 server, generally due to a communications error.

The port driver should inform the class driver whenever the MSCP

server enters the "Controller-Available" state. How the port

driver obtains this information is communications mechanism

dependent. Note that the notification that the controller has

become "Controller-Available" is not necessarily prompt. In

particular, with some communications mechanisms the notification

may not occur until the next time the class driver issues a

command to the controller. Furthermore, the port driver need not

notify the class driver at all if a compound (multiple) error is

associated with the MSCP server becoming "Controller-Available’".

In such a case the class driver will ultimately become aware of

the state change when its Command Timeout expires.

Since no connection exists to an MSCP server that is

"Controller-Offline" or "Controller-Available", the

communications mechanism will either reject or discard any

messages (commands) that a class driver attempts to send to it.

An MSCP server that becomes "Controller-Offline" or

"Controller-Available" may either abort commands in progress or

else continue processing the commands that it has already

received. However, if a Sequential command from a given

connection is aborted, then all subsequently received

non-Immediate commands from the same connection must also be

aborted (i.e., must never begin processing).

Typically, the MSCP server will continue processing outstanding

commands until it "notices" that the connection to the class

driver has been terminated, at which point it will abort any

commands still outstanding. Note that the MSCP server must

guarantee that all outstanding commands have either been

completed or aborted -- i.e., that there are no outstanding

commands -- before it completes a transition from

"Controller-Available" to "Controller-Online".

The MSCP server enters the "Controller-Online" state relative to

a host class driver upon successful synchronization with the

class driver. The class driver synchronizes with the MSCP server

by establishing a connection with the MSCP server. Note that the

MSCP server must guarantee that there are no outstanding commands

"leftover" from a previous incarnation of the connection before

it allows the new incarnation of the connection to be established

and enters the "Controller-Online" state.

Algorithms and Usage Rules Page 4-4

4.2 Controls and Indicators

4.2 Controls and Indicators

All storage units used with MSCP must have the following controls

and indicators:

 o Unit number select mechanism.

 o Unit number display mechanism.

 o Run/Stop switch.

 o Write Protect switch or mechanism.

 o Write Protect Status indicator.

The unit number select mechanism on an MSCP storage unit must be

capable of specifying any unit number in the range 0 through 251

inclusive. The unit number select mechanism must operate without

host intervention and must preserve unit numbers across power

failures and other losses of context.

Alteration of the unit number must be possible in the field.

That is, the unit number must be alterable by Field Service, both

when a device is first installed and subsequently when a system

is reconfigured. The preferred unit select mechanism is a

removable unit number plug, allowing the unit number to be

altered by users as well as by Field Service. Alternatives to

unit number plugs, however, are acceptable so long as they can be

altered by Field Service and they provide the full 0 through 251

unit number range.

A single unit number select mechanism may be shared by the units

of a multi-unit drive. Units that share a unit number select

mechanism always have consecutive unit numbers. If exactly two

units share a unit number select mechanism, it is acceptable for

the first unit to always have an even unit number and the last

unit to always have an odd unit number. If exactly N units share

a unit number select mechanism, it is acceptable for the first

unit’s unit number to always be a multiple of N, the next unit’s

unit number to always be a multiple of N plus 1, etc.

The unit number display mechanism on an MSCP storage unit must

display the unit number(s) specified by the unit number select

mechanism. The display must be visible to normal (non-field

service) human operators. if the unit number select mechanism is

a removable unit plug, then the unit number display mechanism is

merely a number printed on the plug. If several units share a

unit number select mechanism, then they may also share a unit

number display mechanism.

Algorithms and Usage Rules Page 4-5

4.2 Controls and Indicators

The Run/Stop switch must be alterable by normal (non-field

service) human operators to allow or disallow host access to the

unit(s). When in the Run position, this switch indicates that

hosts should be allowed to access the unit(s). When in the Stop

position, this switch indicates that hosts should not be allowed

to access the unit(s), and that, if the unit(s) have removable

media, human operators should be allowed to remove the units’

media (i.e., that the unit should be spun-down). A single

Run/Stop switch may be shared by any units of a multi-unit drive

that share a spindle (i.e., that must be spun-up and spun-down

together).

The write protect switch or mechanism must either be an operator

accessible switch or else some kind of mechanical deformation of

the media, such as a tape write-ring or the write-lockout tab on

a cassette. In either case, it must be alterable by normal

(non-field service) human operators. A separate write protect

switch or mechanism must be provided for each unit of a

multi-unit drive. When actuated, the write protect switch or

mechanism prevents write access to the unit by hosts and

controllers. In the case of a write protect switch, the

transition to the write protected state must be "smooth" rather

than immediate; see Section "Write Protection".

The write protect status display mechanism must display the write

protect status of the unit. A separate write protect status

display mechanism must be provided for each unit of a multi-unit

drive. The write protect status display must be user visible

while a volume is mounted in the unit. That is, the user must

not be required to remove the volume from the unit to determine

whether or not it is write protected.

The preferred write protect status display mechanism is a light,

located within the write protect switch, that is on whenever the

unit is write protected. The light must be lit regardless of the

reason for the unit being write protected -- i.e., it must be lit

when the unit is Software Write Protected (see Section "Write

Protection"), as well as when the unit is Hardware Write

Protected due to its write protect mechanism being activated.

4.3 Unit States

Each unit may be in one of three states relative to each class

driver that is "Controller-Online" to an MSCP server. (Actually,

it is really each unit number that these states apply to, rather

than to a unit proper). Each unit may be in a different state

relative to each "Controller-Online" class driver. The unit

states are:

Unit-Off line

 A unit is "Unit-Offline" whenever it is unable to satisfy

Algorithms and Usage Rules Page 4-6

4.3 Unit States

 normal host requests. Except for status queries, MSCP

 commands addressed to a unit that is "Unit-Offline" will be

 rejected. Furthermore, some device characteristics may not

 be available to status queries.

Unit-Available

 A unit is "Unit-Available" whenever it would be able to

 satisfy normal host requests, except that the host has not

 yet issued an ONLINE command to bring the unit "Unit-Online".

Unit-Online

 A unit is "Unit-Online" whenever it is able to satisfy normal

 host requests and the host has issued a successful ONLINE

 command.

A unit’s state is meaningless with respect to a class driver that

is not "Controller-Online" to the MSCP server or when no class

driver is "Controller-Online" to the MSCP server.

The "Unit-Offline" state has six sub-states, related to the exact

reason for the unit being "Unit-Offline". These substates are:

 1. Unit inoperative. Some fatal error condition in the

 drive prevents the unit from becoming "Unit-Available"

 or "Unit-Online".

 2. Unit disabled. Field Service or a diagnostic has

 decided that continued operation of the unit’s drive

 will lead to progressive deterioration and eventual

 destruction of some portion of the drive or media. The

 unit has been disabled to prevent its use, and

 consequent destruction, until Field Service can repair

 the problem. This cause of the unit being

 "Unit-Offline" can be overridden, and the unit brought

 "Unit-Online", by use of the "Allow Self Destruction"

 modifier to the ONLINE command. Note that some devices

 may have no way of detecting progressive deterioration,

 and consequently will never enter this sub-state.

 3. Unit known. The controller knows that the specified

 unit (i.e., a unit with the specified unit number)

 exists, but the unit is "Unit-Offline" for some normal

 (non-error) condition. Typical causes of this sub-state

 include the unit’s Run/Stop or Load/Unload switch being

 in the Stop or Unload position or no volume being

 mounted in the unit.

 4. Online to another controller. The specified unit exists

 and would be "Unit-Available", except that it or some

 other unit with which it shares an access path (i.e.,

 some other unit on the same multi-unit drive or

 formatter) is "Unit-Online" to one or more hosts via

Algorithms and Usage Rules Page 4-7

4.3 Unit States

 another controller. The unit will become

 "Unit-Available" via this controller if it and all units

 with which it shares an access path cease being

 "Unit-Online" to any hosts via that other controller.

 In terms of the "Unit-Offline" sub-state that is visible

 to and reported by a controller, a unit that is actually

 online to another controller will typically oscillate

 between the "Online to another controller" sub-state and

 the "Unit unknown" sub-state, where the frequency of the

 oscillation is determined by the frequency with which

 DETERMINE ACCESS PATHS commands are issued to the other

 controller for this unit or any unit with which it

 shares an access path. See Section "Multi-Access

 Drives".

 5. Duplicate unit numbers. That is, two or more distinct

 units have the same unit number assigned to them.

 Controllers must check for duplicate unit numbers across

 all units of the same device class that are

 "Unit-Online", that are "Unit-Available", that are

 "Unit-Offline" solely due to being disabled or known or

 having a duplicate unit number, or that the controller

 knows to be online to another controller. A controller

 may or may not, at its option, include inoperative units

 when checking for duplicate unit numbers. Controllers

 must not check units that are unknown (as described

 below) nor may they check for duplicate unit numbers

 across different device classes. Note that a duplicate

 unit number does not affect a unit that is already

 "Unit-Online".

 6. Unit unknown. As far as the controller can determine,

 no unit exists with the specified unit number.

It is possible for a unit to be "Unit-Offline" for several

reasons at the same time (unless the unit is unknown). If a unit

has a duplicate unit number and is not inoperative, then the

controller must report the duplicate unit number; other causes

of the unit being "Unit-Offline" may also be reported at the

controller’s option. In all other cases the controller must

report at least one cause of the unit being "Unit-Offline", but

which one it reports and whether or not it reports more than one

is optional with the controller.

The fact that a unit is inoperative may not be detectable until a

host attempts to bring the unit "Unit-Online". Such units will

be treated as and appear to be "Unit-Available" until a host

issues an ONLINE command. The ONLINE command will fail,

typically with a "Drive Error" status code. At this time either

the fact that the unit is inoperative must be recorded in the

unit itself or else AVAILABLE attention messages must be

suppressed for the unit, exactly as if an AVAILABLE command with

the "Spin-down" modifier set had been issued for the unit. In

Algorithms and Usage Rules Page 4-8

4.3 Unit States

either case, AVAILABLE attention messages must not be generated

for the unit by any controller until a human interacts with the

unit or some other event occurs (such as a power failure that may

clear the error).

Controllers and/or drives should keep all units that are

"Unit-Offline" due to being inoperative, disabled, or having

duplicate unit numbers spun-down, except when such units are

under the control of a diagnostic. The handling of units that

are in fact inoperative, but that the controller and drive

believe to be operative, is described in the preceding paragraph.

For the purpose of automatic configuration -- i.e., for the GET

UNIT STATUS command with the "Next Unit" modifier -- controllers

must acknowledge the existence of all units that are

"Unit-Online" or "Unit-Available", or that are "Unit-Offline"

solely due to being disabled or known or having duplicate unit

numbers. Unknown units must not be acknowledged. Units that are

inoperative or online to another controller may or may not be

acknowledged at the controller’s option.

Controllers must report duplicate unit numbers with a DUPLICATE

UNIT NUMBER attention message, then monitor the affected units

for the cessation of the duplicate unit number condition. When

all units except one have had their unit number changed or have

become unknown, the remaining unit becomes "Unit-Available".

Controllers must report units that they know to be online to

other controllers with an ACCESS PATH attention message. Section

"Multi-Access Drives", describes the detailed circumstances in

which this attention message must be sent.

The "Unit-Offline" sub-states are all reported with a single

status code; they are partially distinguished via different

sub-codes. In addition, the sub-states are distinguished by the

functioning of the "Allow Self Destruction" modifier to the

ONLINE command, the "Next Unit" modifier to the GET UNIT STATUS

command, what unit characteristics are returned by the GET UNIT

STATUS, ONLINE, and SET UNIT CHARACTERISTICS commands, and by the

DUPLICATE UNIT NUMBER and ACCESS PATH attention messages.

Possible causes of a unit being "Unit-Offline", and the resulting

"Unit-Offline" sub-state, include:

 1. The unit is "Unit-Online" via another controller. The

 unit is either unknown or else known to be online to

 another controller, depending upon how recently the

 other controller has processed a DETERMINE ACCESS PATHS

 command for this unit or a unit with which it shares an

 access path. See Section "Multi-Access Drives".

Algorithms and Usage Rules Page 4-9

4.3 Unit States

 2. A power failure that affects the unit but not the

 controller. The unit is unknown.

 3. Hardware failure in the unit or in the connection

 between the unit and the controller. The unit is either

 unknown or inoperative. Note that the unit may appear

 to be "Unit-Available" until an ONLINE command is issued

 for it, at which time it will be recognized as

 inoperative.

 4. Disconnecting the unit from the controller. The unit is

 unknown.

 5. Disabling the unit number select mechanism (i.e.,

 removing the unit number select plug). The unit is

 unknown.

 6. Duplicate unit numbers. Note that this condition will

 not affect a unit that is already "Unit-Online". This

 condition has its own sub-state.

 7. Duplicate unit identifiers. The unit is inoperative.

 Note that the controller need not check for duplicate

 unit identifiers.

 8. Disabling the unit with the Run/Stop or Load/Unload

 switch. The unit is known.

 9. Disabling the unit with port selection switches. The

 unit is unknown.

 10. Removal of the unit from service by operator command,

 typically for diagnostics, formatting, maintenance or

 repair. The unit is inoperative.

 11. An internal controller diagnostic decides the the unit

 is sick and removes it from service. The unit is

 disabled.

 12. No volume is present in the drive. The unit is known.

 13. The unit has not been built yet, the unit is still in

 its shipping crate, or it has otherwise not been

 installed yet. The unit is unknown.

In general, a unit that is "Unit-Offline" to one host class

driver via a specific MSCP server is "Unit-Offline" for the same

reason (same sub-state) to all host class drivers via that same

MSCP server. The only exception is a duplicate unit number

condition that arises while a unit is "Unit-Online" to one or

more class drivers. The unit remains "Unit-Online" to those

class drivers to which it is already "Unit-Online", yet is

"Unit-Offline" to all other class drivers.

Algorithms and Usage Rules Page 4-10

4.3 Unit States

All normal operator initiated transitions to the "Unit-Offline"

state must be smooth, rather than abrupt. Attempts to disable a

unit with its Run/Stop or Load/Unload switch and/or attempts to

dismount (remove) a volume from a unit are, by definition,

"normal operator initiated transitions", and must therefore be

smooth. Any other action that a human operator would typically

use to disable a drive in a non-emergency situation must also be

smooth. Note that this does not preclude the existence of some

special mechanism for immediately disabling a unit or drive in an

emergency, provided that it is not the normal way of disabling a

unit or drive. Note that, as used in this paragraph, a command

is aborted or rejected if and only if a "Unit-Offline" status

code is returned in its end message.

A "smooth" transition to the "Unit-Offline" state implies that

all write operations, including multi-block write operations,

must either be completed in their entirety or else never begun.

To accomplish a smooth transition the controller must complete

all write operations (commands) that have already been initiated.

Other outstanding commands, including outstanding write

operations that haven’t been initiated yet and all outstanding

read operations, may either be completed or aborted at the

controller’s option. However, if a Sequential command from a

given connection is aborted, then all subsequently received

non-Immediate commands from the same connection must also be

aborted. Any new commands issued by a host should be rejected.

Note that establishing write protection must also be a smooth

transition.

A unit enters the "Unit-Available" state when:

 1. The unit is "Unit-Offline" and all causes of the unit

 being "Unit-Offline" are removed. The unit becomes

 "Unit-Available" with respect to all "Controller-Online"

 class drivers.

 2. The unit is "Unit-Online" and a host class driver issues

 an AVAILABLE command for the unit. The unit becomes

 "Unit-Available" with respect to that class driver. If

 the "All Class Drivers" modifier was set, the unit also

 becomes "Unit-Available" with respect to all other class

 drivers to which it is "Unit-Online" via that MSCP

 server.

If a class driver has enabled attention messages, the MSCP server

uses AVAILABLE attention messages to notify the class driver that

a unit has asynchronously become "Unit-Available". If a class

driver sends the MSCP server an AVAILABLE command, then the

transition to "Unit-Available" is synchronous to that class

driver and an AVAILABLE attention message need not be sent to it,

although other class drivers are appropriately notified.

Algorithms and Usage Rules Page 4-11

4.3 Unit States

The possible causes of an asynchronous transition to

"Unit-Available" are as follows:

 1. Any transition from "Unit-Offline" to "Unit-Available".

 This specifically includes the case in which the unit

 was online to another controller and ceases to be online

 to that other controller, even if the unit was

 "Unit-Online" to the same class driver via that other

 controller.

 2. A transition from "Unit-Online" to "Unit-Available",

 with respect to this class driver, that is caused by

 some other class driver issuing an AVAILABLE command

 with the "All Class Drivers" modifier set.

 3. Any spontaneous transition from "Unit-Online" to

 "Unit-Available". That is, any transition from

 "Unit-Online" to "Unit-Available" that is not caused by

 an AVAILABLE command.

The one exception to this applies to a unit that becomes

"Unit-Available" due to an AVAILABLE command that has the

"Spin-down" modifier set or as a side effect of certain errors

which also spin-down the unit. Such commands or errors indicate

that all class drivers are disinterested in the volume mounted on

the unit, so that no class driver should be notified of the

transition until an operator mounts a new volume or otherwise

interacts with the unit. Therefore the request to spin-down the

unit effectively suppresses AVAILABLE attention messages for that

unit until an operator interacts with the unit. Note that the

messages must be suppressed for all class drivers, MSCP servers,

and controllers that may connect to the unit, regardless of which

individual MSCP server and controller actually requested that the

unit spin-down. This effectively means that, for multi-access

drives, the fact that AVAILABLE attention messages are suppressed

must be recorded in the drive itself, rather than in the

controller.

AVAILABLE attention messages must be suppressed at least until an

operator interacts with the unit’s drive, the unit becomes

"Unit-Online" to any class driver via any MSCP server, or the

unit’s drive loses context. It is not acceptable for the unit’s

drive to "lose context" solely to forget that AVAILABLE attention

messages have been suppressed; loss of context must be due to

some external reason, such as a power failure. The suppression

of AVAILABLE attention messages must be cancelled or forgotten if

the unit becomes "Unit-Online" to any class driver via any MSCP

server or if an operator actuates the unit’s Run/Stop or

Load/Unload switch, changes the unit number selected by the Unit

Number Select Mechanism, or mounts a different volume in the

unit. Note that AVAILABLE attention messages are not suppressed

(i.e., their suppression is instantly cancelled or forgotten) if,

after a class driver issues an AVAILABLE command with the

"Spin-down" modifier set, the unit is still "Unit-Online" with

Algorithms and Usage Rules Page 4-12

4.3 Unit States

respect to one or more other class drivers.

MSCP servers may send redundant or unnecessary AVAILABLE

attention messages at any time, provided that attention messages

have been enabled, the messages have not been suppressed as

described above, and the extra messages are infrequent enough to

avoid causing any significant overhead in either the

communications mechanism or a host. It is specifically allowable

for an MSCP server to precede every DUPLICATE UNIT NUMBER

attention message with an AVAILABLE attention message for the

same unit number.

A unit enters the "Unit-Online" state with respect to a class

driver upon the successful completion of an ONLINE command issued

by that class driver.

4.4 Unit Numbers

As described in Section "Controls and Indicators", all disk

accessible via MSCP must have a user visible and Field Service

alterable unit number. The characters displayed as the unit

number, interpreted as a decimal number, must match the binary

value passed in the "unit number" field of MSCP control messages.

Multi-unit drives may use a single unit number select mechanism

and display for the range of consecutive unit numbers assigned to

their units.

MSCP supports unit numbers in the range 0 through 65535

(inclusive). All controllers and units must support unit numbers

in the range 0 through 251 (inclusive); unit numbers between 252

and 65535 may be supported or not at the controller’s and/or

unit’s option. This implies that all units accessible via MSCP

must have a unit number select mechanism capable of specifying

and a unit number display mechanism capable of displaying any

unit number in the range 0 through 251. Controllers must treat

unsupported unit numbers as if the specified unit is

"Unit-Offline" due to being unknown (see preceding section).

The intent of this broad range of unit numbers is that, within a

device class, all units that are accessible to a single host must

have unique unit numbers. In pursuit of this goal units with

duplicate unit numbers are considered to be "Unit-Offline".

However, this must be balanced against another goal, namely that

transient actions performed on another unit should not be allowed

to affect continued host access to a unit that is already

"Unit-Online". Controllers must balance these two goals by

following the following algorithms:

 1. Controllers detect and respond to duplicate unit numbers

 across all units that are "Unit-Online", that are

 "Unit-Available", that are "Unit-Offline" solely due to

 being disabled or known or having duplicate unit

Algorithms and Usage Rules Page 4-13

4.4 Unit Numbers

 numbers, or that the controller knows to be online to

 another controller. Units that are "Unit-Offline" due

 to being unknown must not be considered for duplicate

 unit number detection. Controllers may or may not, at

 the controller’s option, consider units that are

 inoperative. Detection of a duplicate unit number

 condition on one unit of a multi-unit drive is treated

 as a duplicate unit number condition on all other units

 that share one or more of the following components with

 the unit having the duplicate unit number:

 a. A unit number select mechanism.

 b. A Run/Stop or Load/Unload

 c. A spindle or other mechanical components.

 2. Discovery of a duplicate unit number condition does not

 affect any unit that is already "Unit-Online". A unit

 that is already "Unit-Online" remains in that state

 until some other event (such as an AVAILABLE command or

 loss of controller context) occurs that would otherwise

 cause it to become "Unit-Available", at which time the

 unit becomes "Unit-Offline" and is spun-down as

 described below. Note, however, that such a unit is

 "Unit-Offline" to all other hosts (and therefore cannot

 be brought "Unit-Online" by them) even while it remains

 "Unit-Online" to its current hosts.

 3. When a controller becomes aware of a duplicate unit

 number condition on two or more units connected to it,

 it immediately spins-down all such units that are

 "Unit-Available". When a unit that was "Unit-Online"

 with a duplicate unit number condition becomes

 "Unit-Available" for any reason, the controller

 immediately spins it down. In both cases, units that

 belong to a multi-unit drive and share a spindle or

 other mechanical components are to be spun down only if

 all of the units of the drive are "Unit-Offline" or

 "Unit-Available".

 4. The controller returns "Unit-Offline" as the state for

 all units with duplicate unit number conditions that are

 not already "Unit-Online".

 5. The controller must recognize when a duplicate unit

 number condition goes away. That is, the controller

 must recognize when all units except one with the same

 duplicate unit number have their unit numbers changed

 and/or become unknown. When this occurs, the controller

 must send AVAILABLE attention messages for the remaining

 unit (since it has just become "Unit-Available").

Algorithms and Usage Rules Page 4-14

4.4 Unit Numbers

In addition to the above algorithms, controllers report duplicate

unit number conditions to class drivers using the DUPLICATE UNIT

NUMBER attention message. This allows hosts to complain to a

human operator, who will presumably remedy the condition. This

message is sent to all "Controller-Online" class drivers that

have attention messages enabled when a duplicate unit number

condition is first detected. It is permissible for a controller

to send redundant or extra DUPLICATE UNIT NUMBER attention

messages, provided that the reported duplicate unit number

condition actually exists. See Section "Duplicate Unit Number

Attention Message" for more details.

The above algorithms effectively enforce non-duplicate unit

numbers across the drives connected to the same controller.

Although not required by MSCP, it is recommended that class

drivers use the following algorithm to enforce non-duplicate unit

numbers across the drives accessible to that class driver:

 1. Upon becoming aware of a unit (i.e., upon receiving an

 AVAILABLE attention message), the class driver should

 check if it is already aware of a unit with the same

 unit number on a different MSCP server. If it is not

 aware of such a unit, it should exit. If it is aware of

 such a unit, it should check if that unit has the same

 unit identifier.

 2. If the unit identifiers are the same, it is the same

 unit multi-accessed to several controllers, so exit. If

 the unit identifiers are different, the class driver

 should issue a GET UNIT STATUS command to see if the old

 unit still exists.

 3. If the old unit no longer exists (i.e., it’s

 "Unit-Offline"), exit. If the old unit still exists,

 the class driver should check that the unit identifier

 returned by GET UNIT STATUS is also different from the

 unit identifier that was in the AVAILABLE attention

 message. If the unit identifiers are the same, exit.

 If the unit identifiers are different, the class driver

 should issue an AVAILABLE command with the "Spin-down"

 modifier set for the new unit. The class driver should

 also issue an AVAILABLE command with the "Spin-down"

 modifier set for the old unit if the class driver is not

 already "Unit-Online" to that unit.

 4. Whenever a class driver brings an MSCP server

 "Controller-Online", the class driver should issue,

 through that MSCP server, AVAILABLE commands with the

 "Spin-down" modifier set for all units that it has

 "Unit-Online" via another MSCP server.

Algorithms and Usage Rules Page 4-15

4.4 Unit Numbers

 5. Whenever a class driver brings a unit "Unit-Online", the

 class driver should issue ONLINE commands for that same

 unit number to all MSCP servers. If more than one

 ONLINE commands succeeds, the class driver should check

 that the unit identifiers returned by all the successful

 ONLINE commands are the same. If any of the unit

 identifiers are different, then the class driver should

 treat all the ONLINE commands as having failed and issue

 AVAILABLE commands with the "Spin-down" modifier set to

 all MSCP servers on which the ONLINE command succeeded.

Note that this algorithm uses the fact that an AVAILABLE command

with the "Spin-down" modifier set suppresses AVAILABLE attention

messages until a human operator interacts with the unit.

4.5 Command Categories and Execution Order

MSCP commands fall into one of four command categories. Each

category has a set of execution order restrictions that MSCP

servers must satisfy. The four categories and their restrictions

are described below.

Immediate commands are those commands, such as status inquiries,

that both require very little time to complete and do not cause

any unit context changes. MSCP servers must process immediate

commands immediately, without waiting for any other commands to

complete. MSCP servers must guarantee that all outstanding

immediate commands plus an additional GET COMMAND STATUS command

issued by each "Controller-Online" class driver will complete

within the controller timeout interval.

Class drivers may issue Immediate commands whenever their credit

balance is greater than zero, whereas all other commands may only

be issued when the class driver’s credit balance is two or

larger. This is discussed further in Section "Class Driver /

MSCP Server Communications". Class drivers are thus guaranteed

to be able to issue at least one immediate command, and have it

executed, regardless of what other commands they may have

outstanding. In particular, the class driver is guaranteed to be

able to issue a GET COMMAND STATUS command and have it complete

within the controller timeout interval.

Sequential commands are those commands that, for the same unit,

must be executed in precise order. Sequential commands typically

alter a unit’s context, such as by changing a unit

characteristic. All sequential commands for a particular unit

that are received on the same connection must be executed in the

exact order that the MSCP server receives them. The execution of

a sequential command may not be interleaved with the execution of

any other sequential or non-sequential commands for the same

unit. Furthermore, any non-sequential commands received before

and on the same connection as a particular sequential command

Algorithms and Usage Rules Page 4-16

4.5 Command Categories and Execution Order

must be completed before execution of that sequential command

begins, and any non-sequential commands received after and on the

same connection as a particular sequential command must not begin

execution until after that sequential command is completed.

Sequential commands are, in effect, a barrier that

non-sequential commands cannot pass or penetrate.

Non-sequential commands are those commands that controllers may

re-order so as to optimize performance. Controllers may

furthermore interleave the execution of several non-sequential

commands among themselves, performing each command a fragment at

a time. The only restrictions are:

 1. Execution of a non-sequential command must not cross the

 barrier created by a sequential command for the same

 unit.

 2. The controller must complete useful work on its oldest

 outstanding command within the controller timeout

 interval, so as to not cause a command timeout (see

 Section "Command Timeouts").

Special commands are similar to non-sequential commands, but have

additional, unique execution order requirements. The execution

order requirements for special commands are described in the

commands’ description.

Execution order is based on the order in which commands are

received by the controller’s MSCP server. For commands sent by a

single class driver, the order of transmission is identical to

the order of reception. For commands sent by several class

drivers, the order of reception is essentially random. The only

way that a class driver can ensure that one of its commands will

be received after some other command issued by another class

driver is to wait until the other class driver receives the first

command’s end message (i.e., wait until the first command

completes) before sending the command.

For the purpose of determining execution order, a command is

completed when the controller’s MSCP server queues the command’s

end message for transmission to the host. The controller need

not wait until the host has confirmed its reception, although

sequential message delivery guarantees must be preserved. The

gist of this is that, after termination of the connection between

a host class driver and an MSCP server, the absence of a

sequential command’s end message implies nothing about the

execution or non-execution of the sequential command.

Algorithms and Usage Rules Page 4-17

4.6 Class Driver / MSCP Server Synchronization

4.6 Class Driver / MSCP Server Synchronization

Synchronization of a class driver with an MSCP server is

accomplished by establishing or re-establishing the connection

between the class driver and the MSCP server. When the

connection is established or re-established, the MSCP server

aborts or otherwise terminates all commands that are outstanding

from that class driver. This forces the dialogue between the

class driver and MSCP server to a known, synchronized state;

namely that of having no outstanding commands. After

establishing the connection the class driver can issue commands

without worrying about duplicating command reference numbers or

other unfortunate side effects. Note that synchronizing with the

MSCP server, if successful, causes the MSCP server to become

Controller-Online".

As stated above, the main purpose of synchronization is to

guarantee that there are no outstanding commands, thus forcing

the dialogue between the class driver and MSCP server to a known

state. MSCP servers must ensure that this guarantee is met

before they allow synchronization to complete (i.e., before they

become "Controller-Online"). In particular, MSCP servers must

guarantee that no end messages will be sent and that no units

will have their state, context, or (data) contents changed for

any commands that were issued on an earlier incarnation of the

connection between the class driver and MSCP server. Note that

an MSCP server may allow outstanding commands to complete, either

partially or entirely, but if it does it must delay the

completion of synchronization (delay the transition to

"Controller-Online") until all such commands have completed.

Class drivers must synchronize with the MSCP server whenever the

host boots, recovers from a power failure, loses context, or is

recovering from certain errors. After synchronizing with an MSCP

server, the class driver should do the following:

 1. Issue a SET CONTROLLER CHARACTERISTICS command to

 establish host settable controller characteristics and

 obtain non-host settable controller characteristics.

 2. Issue ONLINE commands for all units that the class

 driver wishes to be "Unit-Online".

 3. Re-issue all commands, if any, that were outstanding

 before the class driver synchronized with the MSCP

 server in the exact order that they were originally

 issued. However, any commands that have been aborted

 (i.e., for which an ABORT command has been issued) must

 not be re-issued; instead the class driver should

 assume that the command has been successfully aborted,

 and is therefore no longer outstanding.

There is one exception to re-issuing all commands that were

outstanding. The class driver must maintain a retry limit count,

Algorithms and Usage Rules Page 4-18

4.6 Class Driver / MSCP Server Synchronization

to ensure that its oldest outstanding command won’t be retried

infinitely many times. The magnitude of this limit is host

dependent, although the oldest command must be retried at least

once. When the class driver’s oldest outstanding command exceeds

the retry limit count, it must be aborted and an error returned;

all other outstanding commands, however, should still be retried.

See Section "Command Timeouts" for more information.

It may be possible that a class driver will receive messages from

an MSCP server after the class driver has initiated

synchronization with the MSCP server but before the

synchronization completes. Whether or not this is in fact

possible is communications mechanism dependent, as it depends

upon the detailed design of the communications mechanism and port

driver. Any attention messages that the class driver receives

during this interval should be discarded. Any error log messages

should be logged in the normal fashion. Any end messages that

the class driver receives during this interval may be either

handled normally (thus completing the corresponding command) or

else discarded. If the class driver discards one end message, it

must discard all subsequent end messages until the

synchronization completes. It is recommended, although not

required, that class drivers handle all such end messages

normally.

4.7 Class Driver Error Recovery

The principle method of error recovery used by class drivers is

to re-synchronize with the MSCP server, as described in the

preceding section. All communications mechanism failures and

many controller failures are reported by terminating the

connection between the class driver and MSCP server, in response

to which the class driver should attempt to re-synchronize with

the MSCP server. If the class driver decides that the controller

is insane, either because the class driver received an invalid

message or because a command timed out, it should recover by

re-synchronizing with the MSCP server. Similarly, if the MSCP

server decides that the class driver is insane, it may terminate

the connection to the class driver. If the class driver is in

fact actually sane, it will re-synchronize with the MSCP server

after the port driver notifies it that the connection has been

terminated.

Aside from re-synchronization as described in the preceding

paragraph, class drivers need perform very little error recovery,

since controllers handle all recoverable errors. The only

exceptions to this guideline are as follows:

 1. Errors on multi-access drives should be retried using

 another controller.

Algorithms and Usage Rules Page 4-19

4.7 Class Driver Error Recovery

 2. Commands that fail due to the unit being

 "Unit-Available" should typically be re-issued after

 bringing the unit "Unit-Online".

 3. High availability systems may wish to perform the

 enhanced error recovery described below.

High availability systems may wish to use the following

additional error recovery strategy, in order to minimize the

impact of certain types of controller problems. Rather than

re-issuing outstanding commands all at once after

re-synchronizing with a controller, such a system should instead

re-issue the oldest outstanding command all by itself, preferably

with the "Express Request" command modifier set. The host class

driver should re-issue all other outstanding commands only after

the oldest command completes. The other outstanding commands may

be re-issued either all at once (recommended) or one at a time.

If the oldest command times out or otherwise fails again after

being re-issued, then it was presumably the source of the problem

and normal operation will resume. If the oldest command

succeeds, then the problem is most likely due to some race

condition within the controller and will not re-occur. If the

problem does re-occur, then successive iterations of this

algorithm will execute commands one at a time until the offending

command is found and discarded.

4.8 This section deliberately omitted.

4.9 Host Access Timeouts

MSCP servers provide host access timeouts to guarantee that

multi-access drives will be accessible in spite of certain

communications mechanism failures. If the communications path

between hosts and a controller fails when one or more drives are

"Unit-Online" via that controller, the drives would normally

become inaccessible. The drives can’t be accessed via the

controller through which they are "Unit-Online", since that

controller can’t be accessed, and they can’t be accessed via a

second controller, since they are "Unit-Online" through the first

controller. The host access timeout, if enabled, eliminates this

problem by causing the first controller to automatically release

all drives if it doesn’t receive a command within a specified

time interval.

The exact mechanism used for host access timeouts is to have the

controller’s MSCP server become "Controller-Available" relative

to any host class driver whose host access timeout expires. The

MSCP server automatically resets the timeout whenever it receives

a command from the class driver or has a command outstanding from

that class driver; therefore the timeout will never expire if

Algorithms and Usage Rules Page 4-20

4.9 Host Access Timeouts

the class driver maintains a reasonably constant dialog with the

MSCP server. Note that implementing host access timeouts on a

per host basis has the benefit that the MSCP server will

automatically release any resources allocated to a host if that

host goes down.

If communication with all hosts ceases, the host access timeout

of each class driver will ultimately expire, causing the MSCP

server to become "Controller-Available" relative to all hosts.

Each unit will be released, allowing it to be accessed via an

alternate controller, as soon as all class drivers that are

"Unit-Online" with respect to the unit (or any other unit that

shares its access path) cease to be "Unit-Online" by virtue of

becoming "Controller-Available". Ultimately all class drivers

will become "Controller-Available", thus releasing all units.

Class drivers specify the time interval that an MSCP server will

use for the host access timeout in the SET CONTROLLER

CHARACTERISTICS command. A default host access timeout of 60

seconds is used from the time a class driver becomes

"Controller-Online" until it issues its first SET CONTROLLER

CHARACTERISTICS command.

Each class driver may specify a separate time interval. This

allows class drivers to vary the host access timeout interval in

accordance with host policy and availability requirements. High

availability systems should typically use a fairly short host

access timeout, on the order of 10 to 30 seconds, together with a

background process that verifies the continued availability of

the host to controller communications path. The background

process would have the desirable side effect of ensuring that the

host access timeout never expired. Normal systems should use a

larger timeout, on the order of 1 to 5 minutes, to avoid

excessive resynchronizations, yet still allow failure recovery.

Single user and other specialized systems may disable host access

timeouts. Note that host access timeouts should typically be

enabled even on systems that do not seem to require them, as

drives may be multi-accessed to a totally separate host used as a

backup system.

MSCP servers must implement host access timeouts subject to the

following constraints:

 1. The host access timeout expires, for a particular class

 driver, at the amount of the host access timeout

 interval after the controller or MSCP server completes

 all outstanding commands from that class driver,

 provided that no new commands are received from that

 class driver during this interval.

 2. The MSCP server must enter the "Controller-Available"

 state (as a result of host access timeout expiration)

 relative to a class driver no sooner than the moment of

 host access timeout expiration defined in item 1 above.

Algorithms and Usage Rules Page 4-21

4.9 Host Access Timeouts

 3. The MSCP server should enter the "Controller-Available"

 state (as a result of host access timeout expiration) as

 soon as possible after the moment of host access timeout

 expiration defined in item 1 above. Except when the

 controller is saturated with work for other class

 drivers, this must be no later than one second plus the

 amount of the host access timeout interval after the

 moment of host access timeout expiration.

In other words, the host access timeout is measured from the time

that the last command is completed. The MSCP server may defer

recognition of host access timeout expiration for up to one

second plus the amount of the host access timeout after the

formal expiration of the timeout. That is, the host access

timeout must be implemented with an accuracy range of -0% through

+100%+l second. Furthermore, this accuracy range may be extended

on the high side if the controller is saturated with work for

other class drivers.

This definition of host access timeouts has been structured to

allow at least two alternative implementations. In the first

implementation, the controller or MSCP server starts a timer when

it goes "idle" -- when it completes the last outstanding command.

The duration of the timer is the host access timeout interval.

The timer must be designed to not err on the low side (too short

an interval) and to err by no more than a factor of two on the

high side (too long an interval). If the timer expires before

the MSCP server receives another command, declare a host access

timeout and become "Controller-Available". The second

implementation uses a continuously running timer which "ticks" at

the host access timeout interval. If the timer "ticks" twice in

succession without there being any outstanding commands or

without the MSCP server having received a command from the host,

then declare a host access timeout and become

"Controller-Available".

Each controller or MSCP server has a minimum and a maximum host

access timeout interval that it implements. If a class driver

specifies a host access timeout interval that is less than the

minimum, then the MSCP server uses its minimum. If a class

driver specifies a host access timeout interval that is greater

than the controller’s maximum, then the controller uses its

maximum. A controller’s or MSCP server’s minimum host access

timeout interval must be 10 seconds or less. A controller’s or

MSCP server’s maximum host access timeout interval must be at

least 255 seconds. That is, all controllers must fully implement

host access timeout intervals in the range 10 through 255 seconds

inclusive. Support of intervals outside this range is controller

dependent. The range of host access timeout intervals that a

controller supports must be described in the controller’s

Functional Specification; it cannot be obtained via MSCP.

Algorithms and Usage Rules Page 4-22

4.9 Host Access Timeouts

Note that all controllers and MSCP servers must also implement

the host access timeout value zero, which disables host access

timeouts.

4.10 Command Timeouts

Host class drivers use command timeouts to guarantee that all

controller or communications mechanism failures will be detected.

The failures detected by command timeouts include partially sane

or deadlocked controllers, which may continue to process new

commands even though one or more old commands have been lost and

will never complete. The use of command timeouts centers around

the GET COMMAND STATUS command; indeed, the primary purpose of

the GET COMMAND STATUS command is for command timeouts.

A controller is sane if and only if it will ultimately complete

all commands submitted to it. For practical purposes, the term

"ultimately" must be replaced with the phrase "within reasonable

time". What constitutes a "reasonable time" varies with the

complexity of the command and the performance of the controller

and drives. We can eliminate the difficulty of the host class

driver having to derive this "reasonable time" by re-stating the

definition of a sane controller as follows: A controller is sane

if and only if it will always complete useful work on its oldest

outstanding request within reasonable time. This definition lets

us set the "reasonable time" to some fixed value, and vary the

units in which we measure "useful work" according to the

complexity of the command. Command timeouts are based on this

second definition.

A class driver implements the command timeout mechanism as

follows. For each MSCP server to which it is

"Controller-Online", the class driver keeps track of which

command is its oldest outstanding command plus the previous

"command status" value for its oldest outstanding command. The

previous "command status" value should be set to all ones

whenever the oldest command completes and a new command becomes

the oldest. The class driver should issue GET COMMAND STATUS

commands for its oldest outstanding command at intervals of the

controller timeout interval or longer. When each GET COMMAND

STATUS command completes, the class driver must check if the

command for which it was issued is still outstanding and, if it

is, verify that the "command status" returned by the GET COMMAND

STATUS command is lower than the previous "command status"; this

value measures the amount of work remaining before completion of

the command. If the value ever increases or stays the same, or

if a GET COMMAND STATUS command ever takes longer than the

controller timeout interval to complete, then the class driver

should assume that the controller has failed and re-synchronize

with the controller.

Algorithms and Usage Rules Page 4-23

4.10 Command Timeouts

In addition to guaranteeing that they will complete useful work

on their oldest outstanding command, controllers must also

guarantee that they will complete all aborted commands within the

controller timeout interval. That is, an aborted command’s end

message must be sent no later than the amount of the controller

timeout interval after the ABORT command’s end message. Host

class drivers can check this by setting the previous "command

status" value to one whenever the oldest outstanding command has

been aborted (i.e., when the class driver receives the ABORT

command’s end message indicating that its oldest outstanding

command has been aborted).

Single host controllers -- i.e., controllers that do not provide

Multi-Host support -- need not guarantee that all aborted

commands will complete within the controller timeout interval if

excessively pathological situations arise. Examples of such

situations include:

 1. ACCESS or ERASE commands whose byte counts exceed the

 maximum data transfer size imposed on READ and WRITE

 commands by the communications mechanism. For example,

 the Uhibus imposes an architectural maximum transfer

 size of 2**18 bytes, since that is the size of the

 Unibus address space. Therefore ACCESS and ERASE

 commands whose byte counts exceed 2**18 bytes are

 excessively pathological for controllers that use the

 Unibus as their communications mechanism, so the

 controller need not meet the abort timeout requirements

 when such commands are outstanding.

 2. Compound or multiple errors, causing error recovery

 sequences to stretch out to unrealistic lengths.

If the command timeout for an aborted command expires due to such

a situation, the class driver will re-synchronize with the MSCP

server and re-issue all outstanding commands except for those

that had been aborted. Since the aborted commands will not be

re-issued, the timeout will not re-occur. Thus this exception is

transparent to host class drivers.

The above algorithm applies to non-immediate commands. With one

exception the same algorithm may also be used for immediate

commands, although a simpler one (using the fact that all

immediate commands complete within the controller timeout

interval) is also appropriate. The one exception is the GET

COMMAND STATUS command used by the timeout algorithm itself.

This command must be timed out as follows. If the class driver’s

credit balance is zero when it attempts to issue the GET COMMAND

STATUS command, it must queue the GET COMMAND STATUS command for

immediate transmission (before any other commands that may be

outstanding) when its credit balance becomes non-zero. If the

controller timeout interval expires again before the GET COMMAND

STATUS command has both been transmitted and completed, then the

class driver should assume that the controller has failed. Note

Algorithms and Usage Rules Page 4-24

4.10 Command Timeouts

that the class driver’s credit balance is guaranteed to be

non-zero when all outstanding immediate commands have completed.

Note also that controllers or MSCP servers must guarantee that

all outstanding immediate commands plus one additional GET

COMMAND STATUS command will complete within the controller

timeout interval.

Upon concluding that a controller has failed, the class driver

must re-synchronize with the controller’s MSCP server and

re-issue all commands (except commands that it has tried to

abort) that were outstanding to that MSCP server in the same

order that they were originally issued. In particular, the

oldest outstanding command -- the one that timed out -- must be

issued first (after initial SET CONTROLLER CHARACTERISTICS and

ONLINE commands). The only exception to this is if the command’s

retry count expires. The class driver should maintain a retry

count of the number of times the oldest command hes timed out and

been retried, and abort the command if the retry count exceeds a

host dependent limit. The size of this retry limit is determined

by host policy, except that all commands must be retried at least

once. Note that sub-code zero of the "Controller Error" status

code has been reserved for commands that exceed their retry

count. This sub-code must never be generated by MSCP servers;

it is generated by class drivers as a standard means of reporting

command timeout errors.

In order to implement command timeouts, the host class driver

must first obtain the controller timeout interval via the SET

CONTROLLER CHARACTERISTICS command. Therefore the class driver

should issue a SET CONTROLLER CHARACTERISTICS command as the

first command after becoming "Controller-Online". The class

driver should use a controller timeout interval of 10 seconds for

this initial command. The class driver must never use a time

interval that is shorter than the controller specified controller

timeout interval for its command timeout determination, although

the class driver may use a time interval that is longer than the

one specified by the controller. The controller timeout interval

specified by the controller must not be larger than 4 minutes and

15 seconds (i.e., 255 seconds).

One characteristic of this command timeout algorithm is that MSCP

servers need not implement, and indeed most will not implement,

the GET COMMAND STATUS command for any command that the MSCP

server can guarantee will complete within the controller timeout

interval. The GET COMMAND STATUS command should always return

the value zero as the "command status" of such a command. It is

acceptable if, due to vagaries of controller optimization

algorithms, such a command will occasionally timeout. This is

acceptable, so long as the frequency of such timeouts is

extremely small and the controller immediately begins processing

the first command it receives after re-synchronization. Since

the class driver re-issues commands in the same order that they

were originally issued, the oldest or timed out command is

re-issued first, effectively guaranteeing that it will not be

Algorithms and Usage Rules Page 4-25

4.10 Command Timeouts

delayed again by the controller’s optimization algorithms. (The

simplest way for most controllers to implement this will

typically be to treat the first transfer command received across

a newly established connection as if it were an Express Request).

4.11 Disk Geometry and Format

The host accessible portion of a disk unit consists of a vector

of fixed length blocks, called logical blocks. Logical blocks

are identified by logical block numbers (LBNs) which range from

zero through N-1 inclusive, where "N" is the total number of

logical blocks on the unit. The logical blocks on a unit are

divided into two mutually exclusive regions:

 1. The host area consists of those logical blocks available

 for host data storage. Logical blocks in the host area

 have LBNs in the range zero through US-1 inclusive,

 where "US" is the "unit size", or number of logical

 blocks in the host area. The host obtains "US" or the

 "unit size" from the ONLINE or SET UNIT CHARACTERISTICS

 command end messages.

 2. The unit’s Replacement and Caching Table (RCT), used to

 record bad block replacement and miscellaneous

 housekeeping information. This information is further

 described below. The RCT (actually, multiple copies of

 the RCT) occupies the logical blocks numbered US through

 N-1 inclusive.

All of the logical blocks in the host area are guaranteed to be

"good" -- i.e., to be free of permanent or hard errors (media

defects). Most controllers implement this via bad block

replacement. A pool of replacement blocks, identified by

replacement block numbers (RBNs), is provided on the disk.

Replacement blocks are not directly accessible to hosts. All

host area logical blocks that are bad -- i.e., that contain media

defects leading to hard errors or large numbers of correctable

errors -- are replaced by a replacement block. The mechanism

used to perform this replacement, and to revector accesses to bad

logical blocks to the proper replacement blocks, is described in

the DEC Standard Disk Format and/or the controller’s Functional

Specification. The pool of replacement blocks is typically

distributed throughout the disk, so that revectoring of logical

block accesses to replacement blocks has negligible impact on

performance. See Section "Bad Block Replacement" and DEC

Standard Disk Format for more information on bad block

replacement.

Algorithms and Usage Rules Page 4-26

4.11 Disk Geometry and Format

The logical blocks that contain the RCT are not guaranteed to be

"good". Since the RCT describes the bad logical block to

replacement block mapping, mapping bad RCT blocks to replacement

blocks would present an insoluble recursion problem. Instead of

using replacement blocks for bad RCT blocks, the RCT region

actually contains multiple copies of the RCT. Hosts obtain the

size of each RCT copy and the number of RCT copies via the GET

UNIT STATUS command. The last copy of the RCT may be truncated.

See the DEC Standard Disk Format. Note that the disk is unusable

if the corresponding block is bad in every copy of the RCT.

The detailed format and access algorithms for the RCT are

described in the DEC Standard Disk format. In general, however,

each copy of the RCT contains the following information:

 1. One entry per replacement block, identifying the logical

 block, if any, that has been replaced by the replacement

 block.

 2. Context information identifying the bad block

 replacement operation, if any, that is currently in

 progress on this unit. This information is used to

 complete the bad block replacement operation if the host

 and/or controller should crash in the middle of bad

 block replacement.

 3. A Volume Write Protect flag.

Alternatively, a controller may use a non-standard replacement

scheme or some other scheme than bad block replacement to

guarantee that the logical blocks in the host area are "good".

The mechanisms used by such a controller to guarantee that the

host area logical blocks are "good" must be totally invisible to

hosts, and must not require host cooperation for their

initialization, use, or maintenance. Such a controller or unit

must still provide the first block of the RCT, which contains the

Volume Write Protect flag.

The host visible portion of each logical block consists of a

fixed number of data bytes. The number of data bytes is either

512 or 576, determined when the disk volume is formatted. All

logical blocks on a disk volume have the same number of data

bytes.

The data bytes are the only portion of logical blocks that are

directly host visible. Certain other items, however, must be in

each logical block as their presence is implied by various MSCP

functions:

 1. Each block must contain a forced error indicator, so as

 to properly implement and recognize the "Force Error"

 command modifier.

Algorithms and Usage Rules Page 4-27

4.11 Disk Geometry and Format

 2. Each block must contain a bad block indicator, so that

 references to bad blocks can be efficiently revectored

 to the proper replacement blocks. This is unnecessary

 if the controller does not use bad block replacement to

 provide a "perfect" host area.

As stated above, the host area of a disk is structured as a

vector of logical blocks. From a performance viewpoint, however,

it is more appropriate to view the host area as a four

dimensional hyper-cube, the four dimensions being cylinder,

group, track, and sector. Thus, it is possible to decompose a

logical block number into a unique quadruple of numbers, namely

the block’s cylinder number, group number, track number, and

sector number. Cylinder number is most significant and sector

number is least significant.

Alternatively, we can define a track as consisting of a fixed

number of blocks, a group as consisting of a fixed number of

tracks, and a cylinder as consisting of a fixed number of groups.

The position of a block within a track is the block’s sector.

The terms sector, track, and cylinder all come from the geometry

of classical disk drives. Groups can be viewed as an

optimization for short seeks whose seek time is easily

predictable.

At any particular instant, the set of logical blocks that are

potentially accessible is those blocks in all tracks that are in

the same sector, group, and cylinder. In the absence of

transfers to a different group or cylinder, this set of

potentially accessible blocks changes over time by keeping the

group and cylinder constant while incrementing the sector (modulo

the number of blocks/sectors in a track). Referring to our

hyper-cube analogy, the set of potentially accessible blocks form

a line parallel to the track axis. This line moves parallel to

the sector axis, wrapping around when it reaches the edge of the

hyper-cube. A disk therefore provides cyclic access to the

blocks in a particular group and cylinder.

This access structure to logical blocks implies that, to a close

approximation, the track to which a block belongs has no effect

upon performance. That is, switching tracks within the same

group and cylinder effectively requires zero time. Two separate

transfers in the same group and cylinder and for the same sectors

have similar performance, regardless of what tracks they are on.

To a first order approximation, two separate transfers on

successive sectors of different tracks in the same group and

cylinder have the same performance as a single, two sector

(block) transfer.

Algorithms and Usage Rules Page 4-28

4.11 Disk Geometry and Format

Changing cylinders, however, does require a certain amount of

time. The amount of time required to switch between two

cylinders is approximated by a monotonically increasing function

of the difference between the two cylinder numbers. The time to

switch between cylinders is typically not affected by whether or

not groups are also being changed. After switching cylinders,

the sector position of the disk (i.e., which sector’s blocks are

immediately accessible) is unpredictable.

Changing groups also requires a certain amount of time.

Generally, the time to switch between groups in the same cylinder

is no more than, and often less than, the time to switch between

one cylinder and the next. If cylinders and groups are both

changed at the same time, the time to switch groups is

effectively zero, as it is included in the time to switch

cylinders.

When changing from one group to the next (successive) group

within the same cylinder, the time required to switch groups is

predictable, so that transfers are optimized. If a transfer to

sector S in group G is followed by a transfer in group G+1 of the

same cylinder, then sector S+1 (modulo the number of

sectors/blocks in a track) is the optimal sector for the new

transfer and sector S is the maximally unoptimal sector for the

new transfer. The main effect of this is to optimize continuous

(spiral) transfers that cross group boundaries.

Note that what has been described herein is the model for disk

logical geometry, which may have a tenuous relationship to a

disk’s actual physical geometry. Disk designers should devise a

logical to physical geometry mapping which optimizes the accuracy

of the model herein described. This will generally be done as

follows. Head or track switches that effectively require zero

time (i.e., that require less than the inter-sector time) will be

reported as logical MSCP tracks. Head or track switches that

require significant amounts of time will be divided into two

classes: those that require only a little time (typically less

than one rotation) and whose time is predictable, and those that

require somewhat more time and/or a lot of time. The switches

that require only a little time will be reported as logical MSCP

groups. The switches that require more time will be reported as

logical MSCP cylinders, where the switches should be mapped to

cylinders in such a manner as to minimize the amount of time

required to switch between cylinders that are (numerically) close

together.

The affect of this geometry on multi-block transfers is as

follows. A multi-block transfer requires a certain minimum time,

which is the time to transfer one block or sector times the

number of blocks in the transfer. Crossing track boundaries

requires no additional time. Crossing a group boundary requires

a small, relatively fixed additional amount of time; this time

is typically less than the time to transfer an entire track

(i.e., less than one rotation). Crossing a cylinder boundary

Algorithms and Usage Rules Page 4-29

4.11 Disk Geometry and Format

requires a somewhat larger additional amount of time; this time

is typically at least the time to transfer an entire track (i.e.,

at least one rotation).

The affect of this geometry on host allocation policies for

random-access files is as follows. Whenever possible, a

random-access file should be allocated within a single group. If

this is not possible, the host should try to allocate it within a

single cylinder. If this is also not possible, the host should

allocate it in the minimum number of adjacent cylinders.

When a block has a high probability of being accessed immediately

after another block, hosts should attempt to allocate both blocks

in the same group or, if that is not possible, in the same

cylinder. If both blocks cannot be allocated within the same

cylinder, then they should be in cylinders that are as close

together as possible.

Hosts obtain the size of a unit’s tracks, groups, and cylinders

from the GET UNIT STATUS command’s end message. Some of these

disk geometry concepts may not apply to all disk units. Units

report the fact that a concept doesn’t apply by specifying its

size to be the same as the next larger concept. For example, a

disk unit that doesn’t have groups would specify one group per

cylinder, implying that groups and cylinders are the same size.

Zero should be supplied for the cylinder size if the cylinder

concept is inappropriate to a disk unit, which hosts should

interpret as the entire unit being a single cylinder. The value

zero may equivalently be interpreted as specifying an arbitrarily

large number of groups per cylinder. This may propagate

downwards; if both cylinders and groups are inappropriate to the

unit, then zero would be provided for both their sizes. If the

model of cyclic access to the sectors in a track is

inappropriate, then the unit should typically specify one block

per track.

The following examples illustrate how inappropriate concepts

should be specified:

 1. A "disk" implemented as a pure random-access memory

 (i.e., semiconductor RAMs) would specify one block per

 track (since cyclic access doesn’t apply) and zero for

 the cylinder and group size (since the entire unit is

 effectively a single group).

 2. A classical DECtape could be specified several ways, but

 one block per track, one track per group, and one group

 per cylinder (i.e., each block is a separate cylinder)

 is probably the most natural.

 3. A single loop shift register or delay line (such as an

 ultrasonic delay line) would specify zero for the track,

 group, and cylinder size, since the entire unit is

 effectively a single track.

Algorithms and Usage Rules Page 4-30

4.11 Disk Geometry and Format

There is one exception to the above discussion, concerning the

specification of track size. Track size, in addition to being

useful for performance prediction, is also used in the bad block

replacement algorithm specified in DEC Standard Disk Format. It

is possible that the track size appropriate for performance

considerations will be different from the track size required by

bad block replacement. If this occurs, the track size required

by bad block replacement must be specified, as the performance

effects are a secondary consideration.

Note that all of this performance oriented disk geometry only

applies to the host area of a disk unit. The concepts need not

apply to the Replacement and Caching Table (RCT) and any other

areas of a disk, as access to those areas is not performance

sensitive and/or not host visible.

4.12 Bad Block Replacement

Bad block replacement is a technique used with disk class devices

to present each unit as a single logically contiguous set of

usable blocks. See the preceding section for a discussion of

logical blocks, replacement blocks, and a high level description

of bad block replacement.

Most bad blocks are detected when a disk volume is manufactured.

These blocks are always replaced when the volume is formatted, as

are any other blocks that the formatter can determine are bad.

Other blocks become bad during normal use, and must be replaced

dynamically. MSCP is solely concerned with dynamic bad block

replacement.

Usually, but not necessarily always, the host performs bad block

replacement in response to the controller reporting a bad block.

The algorithm used to perform bad block replacement is described

in DEC Standard Disk Format.

Controllers only report bad blocks (to hosts) in transfer command

end messages. This is a direct consequence of the fact that

controllers only detect bad blocks while performing disk

transfers. They report bad blocks to hosts by means of the "Bad

Block Reported" end message flag. If this flag is set, then the

"First Bad Block" field in the end message is the logical block

number of the first bad block (lowest block number) encountered

by the transfer. A second flag, the "Bad Blocks Unreported" end

message flag, is set to indicate that multiple bad blocks were

encountered by the transfer, implying that one or more were not

reported to the host. After replacing the first bad block, the

host may (at its option) reissue the transfer to determine the

next bad block, repeating this process until all of the bad

blocks are replaced. Given the likely incidence of multiple bad

blocks in a transfer, it is unclear that this yields any benefit.

Algorithms and Usage Rules Page 4-31

4.12 Bad Block Replacement

When performing bad block replacement, the host must access and

update the unit’s Replacement and Caching Table (RCT), inform the

controller that the block has been replaced, and initialize the

new replacement block. The host accesses and updates the RCT

using ordinary transfer operations, specifying a logical block

number in the range assigned to the RCT. The host informs the

controller that the block has been replaced with the REPLACE

command; this allows the controller to reformat the disk to

reflect the bad block replacement. The new replacement block is

initialized with a normal WRITE command, specifying the bad

block’s logical block number, after the REPLACE command has

completed.

While a bad block replacement operation is in progress, the

details of the replacement operation being performed are recorded

in a portion of the unit’s Replacement and Caching Table (RCT).

The information recorded includes the bad block’s LBN, the

replacement block’s RBN, and the data to be written into the

block at the conclusion of the replacement operation. Recording

this information in the RCT allows the bad block replacement

operation to be successfully completed in the event of a system

crash, power failure, or other interruption. When the unit next

becomes "Unit-Online", the host must check the RCT and complete

any replacement operation that was in progress. At the same time

the host must check the Volume Write Protect flag and take the

actions described in Section "Write Protection".

4.13 Write Protection

There are several ways that a unit or volume may be write

protected under MSCP:

Hardware Write Protection

 The unit’s write protect mechanism has been activated by a

 user, causing the unit to be write protected.

Software Write Protection

 The host has requested that the unit be write protected.

When Hardware Write Protection is established (i.e., when a user

activates the unit’s write protect mechanism), the controller

must provide a smooth transition to the write protect state.

That is, the controller must complete all write operations

(commands) that it has already initiated on the unit before

actually prohibiting writes. Note, however, that the controller

should immediately reject any new write operations that it

receives after the user activates the unit’s write protect

mechanism. Write operations that the controller received before

the write protect mechanism was activated, but that haven’t been

Algorithms and Usage Rules Page 4-32

4.13 Write Protection

initiated yet, may either be rejected or completed at the

controller’s option. The end result of this is that each

individual write command or operation is either completed in its

entirety or else rejected before any of its data is written to

the unit. Note that this issue cannot arise with Software Write

Protection, as they are established and cleared by sequential

commands, which implies that no write operations can be

outstanding .

Note that it is not possible to perform bad block replacement

when a unit is Hardware Write Protected.

A unit’s Write Protect Status Display Mechanism must indicate the

"inclusive or" of all forms of write protection. That is, the

display must indicate that the unit is write protected both when

it is Hardware Write Protected and when it is Software Write

Protected.

Whenever a host brings a unit "Unit-Online", it must check the

"Volume Write Protect" flag in the unit’s RCT. This is in

addition to the other checks it must make for a partially

completed bad block replacement operation (see Section "Bad Block

Replacement"). If the RCT flag is set, the host should

immediately (software) write protect the unit with a SET UNIT

CHARACTERISTICS command. When a user or a higher level host

process subsequently decides to write enable the volume, the

Software Write Protect status must be cleared with a SET UNIT

CHARACTERISTICS command and the RCT accessed to clear the flag.

See DEC Standard Disk Format for RCT access algorithms and the

detailed format of these RCT flags.

4.14 Compare Operations

MSCP includes the following kinds of compare operations:

 1. The COMPARE HOST DATA command.

 2. Read-compare operations, invoked by the "Compare Reads"

 unit flag or by the "compare" modifier on a READ

 command.

 3. Write-compare operations, invoked by the "Compare

 Writes" unit flag or by the "compare" modifier on a

 WRITE command.

The operation of these different types of compare operations is

described below. Note that all of the compare operations report

the first difference or other error starting from the beginning

of the transfer. Therefore the compare operation at the end of

the transfer may be aborted if a difference is discovered at the

beginning.

Algorithms and Usage Rules Page 4-33

4.14 Compare Operations

The COMPARE HOST DATA command is used to verify that data in host

memory matches data on a unit. The data is obtained from the

unit in the manner that is most convenient or efficient for the

controller. In this respect the COMPARE HOST DATA command

operates identically to a READ command. Unlike the READ command,

the data is not transferred to host memory; instead, data is

obtained from host memory and compared against the data obtained

from the unit. Upon completion of the command the controller

reports whether the data was identical or different. The data

being different is reported as a "Compare Error" in the command’s

end message. However, no error log message is generated as this

is not considered to be a "significant" error (since it can be

deliberately caused by user programs).

Read-compare and write-compare operations are performed at the

conclusion of the appropriate transfer commands to verify that

the data was correctly transferred and that the data can now be

obtained from its destination. The general algorithm used is to

obtain the data from its destination and compare it against the

data re-obtained from its source.

If a read-compare or write-compare operation fails, the

controller must interpret this as implying that the original

transfer failed and therefore retry the original transfer if

appropriate. If the controller successfully obtains the data

from its source and destination, but the data is different, then

the controller must retry the original transfer and report the

compare error in an error log message. If the controller cannot

successfully obtain the data from its destination, but the error

is one that may be eliminated by re-writing the data to its

destination, then the controller must also retry the original

transfer and report the error (from the attempt to obtain the

data from its destination) in an error log message. All other

errors need not be retried, but must be reported in an error log

message. The only exception to the above is commands that have

the "Suppress Error Recovery" modifier set; the controller may

or may not, at the controller’s option, retry the original

transfer if a compare error occurs in such a command.

For example, "Data Errors", such as an uncorrectable ECC error,

must be retried on write-compare operations. They need not be

retried on read-compare operations, since an unrecoverable "Data

Error" implies that the READ itself will fail. "Compare Errors"

must always be retried. Note that the controller need not

discriminate among types of errors -- it may always retry all

errors during read-compare or write-compare operations,

regardless of whether or not the error will inhibit the original

transfer.

The number of retries required for read-compare and write-compare

operations is controller dependent. However, all controllers

must retry such operations at least once. The exact number of

retries that a controller implements should be chosen based on

undetected error rate characteristics. The controller may either

Algorithms and Usage Rules Page 4-34

4.14 Compare Operations

retry the entire transfer, or else only retry the portion that

includes the error.

4.15 Multi-Unit Drives and Formatters

A multi-unit drive is a single physical disk drive that appears

as several independent units to hosts. So-called fixed plus

removable disk drives, providing one removable disk unit and one

non-removable disk unit, are the most common example of

multi-unit drives. A multi-unit formatter is a single set of

interface or read/write electronics that connects several

otherwise independent units to controllers.

All the units of a multi-unit drive or formatter share a single

access path to controllers. This implies that all of the units

must be "connected" to the same controller. In particular, if

one unit of a multi-unit drive or formatter is "Unit-Online" via

a controller, then all the other units of the multi-unit drive or

formatter may only be accessed by that same controller. That is,

the other units are "Unit-Offline" to all other controllers.

Awareness of this characteristic is critical for high

availability systems -- if a failed operation on a multi-access

unit is to be retried via another controller, and the unit is

part of a multi-unit drive or formatter, then all units of the

drive or formatter must be switched to the other controller.

Some units of a multi-unit disk drive may share mechanical

components as well as interface electronics. Such units are said

to share a spindle. That is, the units must either be all

spinning or all not spinning, just as if the units shared a drive

motor or spindle (which they typically will). Such units must

also share a single Run/Stop switch, since they are always

spun-up and spun-down together. Hosts must also be aware of

units which share a spindle, as dismounting one such unit

requires that all units sharing the same spindle be spun-down.

The units of a multi-unit drive or formatter are identified by

the "multi-unit code" unit characteristic field. Hosts obtain

this two byte field via the AVAILABLE attention message or in the

end message of a GET UNIT STATUS, ONLINE, or SET UNIT

CHARACTERISTICS command. The low byte of this field contains a

controller dependent encoding of the access path between the

controller and the drive. The high byte of this field contains a

controller dependent encoding of the spindle, on a particular

access path, that the unit uses. Controllers may use any

encoding whatsoever, provided that each access path and each

spindle (within an access path) has a unique value. Note that

the access path byte is implicitly qualified by the controller’s

or MSCP server’s identity, and that the spindle byte is

implicitly qualified by the access path.

Algorithms and Usage Rules Page 4-35

4.15 Multi-Unit Drives and Formatters

Hosts use the "multi-unit code" field as follows. When a host

decides to spin-down a unit, it scans all other units that are

"Unit-Online" via the same MSCP server for those units whose

entire "multi-unit code" field (both bytes) matches the unit

being spun-down. Such units, if any, share a spindle or other

mechanical components with the unit being spun-down, so that they

must be spun-down together. When a host decides to access a unit

via a different controller, it scans all other units that are

"Unit-Online" via the same MSCP server for those units whose low

byte of the "multi-unit code" field matches the unit being

switched. Such units, if any, share an access path with the unit

being switched, so that they must also be switched to the new

controller.

Note that the low byte of the "multi-unit code" field (the access

path) is meaningless for units that are inherently restricted to

a single controller. Controllers may return any fixed value as

the access path encoding for such units, provided that it doesn’t

duplicate the value returned for any units on the same controller

that are not inherently restricted to a single controller.

This use and format of the "multi-unit code" field implies the

following architectural restrictions on all controllers:

 1. All units that share a spindle or other mechanical

 components must also share an access path. Note that

 this is an essential restriction for multi-unit drives,

 regardless of how shared components are communicated.

 If units that share a spindle did not share an access

 path, then they could be simultaneously "Unit-Online"

 via different controllers, making it impossible to

 coordinate a simultaneous spin-down.

 2. There is a maximum of 256 access paths per controller.

 In the absence of multi-unit drives or formatters, this

 implies a maximum of 256 units per controller.

 3. There is a maximum of 256 spindles per access path. In

 the absence of shared spindles, this implies a maximum

 of 256 units per access path or formatter.

Algorithms and Usage Rules Page 4-36

4.16 Controller and Unit Identifiers

4.16 Controller and Unit Identifiers

MSCP requires that all controllers and drives have unique

identifiers, called controller identifiers and unit identifiers.

The structure of these identifiers is as follows:

 31 0

 +-------------------------------+

 | unique device number |

 +-------+-------+ +

 | class | model | |

 +-------+-------+---------------+

The "class" byte identifies the type of the subsystem --

controller, disk drive, etc. The "model" byte identifies the

exact model of the subsystem within its class. All valid class

and model codes are non-zero, implying that all valid identifiers

are non-zero. The "unique device number" field must uniquely

identify the device among all devices of that same class and

model. The device serial number could be used as the "unique

device number", although that isn’t required. Currently defined

values for the "class" and "model" bytes are listed in Appendix

C. Values for new devices must be added to that appendix, via an

ECO to this specification, as new products are developed. Note

that different units of multi-unit drives are distinguished by

having different "model" bytes; the "class" and "unique device

number" fields are typically identical. Note also that all MSCP

servers for the same device class within the same controller must

return the same controller identifier.

As previously stated, MSCP requires that controller and unit

identifiers be unique across all devices accessible via MSCP.

This clearly cannot be checked by controllers. Controllers can,

however, enforce unique unit identifiers across the units that

are attached to themselves. This is done using the following

algorithms:

 1. Controllers should detect and respond to duplicate unit

 identifiers across all units whose unit identifiers the

 controller can obtain, including all units that would

 otherwise be "Unit-Online" or "Unit-Available".

 Detection of a duplicate unit identifier on one unit of

 a multi-unit drive is treated as a duplicate unit

 identifier condition on all other units that share one

 or more of the following components with the unit having

 the duplicate unit identifier:

 a. A unit number select mechanism.

 b. A Run/Stop or Load/Unload switch.

Algorithms and Usage Rules Page 4-37

4.16 Controller and Unit identifiers

 c. A spindle or other mechanical components.

 Note that duplicate unit identifiers are detected

 regardless of the state of a unit’s Run/Stop or

 Load/Unload switch.

 2. Whenever a controller becomes aware of a duplicate unit

 identifier, it immediately spins-down all units with the

 duplicate identifier and forces them to remain

 spun-down. The controller spins-down the units

 regardless of their current state. The controller

 typically forces them to remain spun-down by spinning

 them down again whenever an operator spins them up.

 3. The controller returns "Unit-Offline" with sub-state

 "inoperative" as the state for all units with duplicate

 unit identifiers. In addition, if the unit might

 potentially be connected to another controller, the

 controller should flag the presence of the duplicate

 unit identifier in the drive. Other controllers, if

 any, must check this flag and also treat the unit as

 "Unit-Offline" if the flag is set.

Whether or not a controller does in fact check for duplicate unit

identifiers is controller dependent. Note that a duplicate unit

identifier is a drastic failure, indicative of some otherwise

undiagnosed hardware malfunction.

4.17 Media Type Identifiers

Controllers return a media type identifier for each unit

accessible via that controller. This identifier encodes two

pieces of information:

 1. The preferred device type name for use with the unit.

 These two alphabetic characters are conventionally used

 with the unit number and a controller designator as the

 fully qualified operating system identifier for the

 unit.

 2. The name (product name) of the media used on the unit.

 This name should be printed on the unit’s front panel

 and on all removable media that may be used with the

 unit.

The primary reason for returning this information is to simplify

operating system support for generic device allocation.

The media type identifier returned via MSCP is a 32 bit quantity

encoded as follows:

Algorithms and Usage Rules Page 4-38

4.17 Media Type Identifiers

 31 26 21 16 11 7 6 0

 +----+----+----+----+----+------+

 | D0 | D1 | A0 | A1 | A2 | N |

 +----+----+----+----+----+------+

where the fields are as follows:

D0

D1 The preferred device type name for the unit. D0 and D1 are

 five bit fields, each encoding one alphabetic character. "A"

 is encoded with the value 1, "B" with the value 2, etc. D0

 encodes the left character of the device type name, D1 the

 right character.

A0

A1

A2

N The name of the media used on the unit. A0 through A2 are

 five bit fields, each encoding an alphabetic character or

 null. "A" is encoded with the value 1, "B" with the value 2,

 etc. Zero represents a null or the absence of a character.

 One to three characters of the media name are encoded, left

 justified, in A0 through A2. N is a seven bit field

 containing the value of two decimal digits.

Note that the encoding of the media name assumes that the name

consists of one, two, or three alphabetic characters followed by

exactly two digits (i.e., ann, aann, or aaann). MSCP requires

that the product names for all mass storage devices adhere to

this format.

Currently defined device type and media names (i.e., currently

defined media type identifier values) are listed in Appendix C.

Names or values for new devices must be added to that appendix,

via an ECO to this specification.

 CHAPTER 5

 MSCP CONTROL MESSAGE FORMATS

5.1 Generic Control Message Format

All MSCP control messages consist of a 12 byte header and a 36

byte or shorter parameter area. The device class (e.g., disk)

does not appear in the control message; it is implied by the

connection or MSCP server to which the control message is sent.

Multi-byte numbers are stored least significant byte first (i.e.,

using the standard VAX11 number formats). Messages are laid out

as follows:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers or status | opcode|

 +-----------------------+-------+

 | |

 / parameters /

 / /

 | |

 +-------------------------------+

The length of the parameter area varies depending upon the

opcode.

The communications mechanism conveys both the text of a message

and its length. The receiver of a message uses the its length to

verify that all required parameters are in fact present.

The communications mechanism may restrict the allowable message

lengths. For example, it might require that all messages have a

fixed length of 48 bytes or that the length be an even multiple

of 4 bytes. For this reason the message lengths defined by MSCP

are minimum lengths; senders may pad messages as necessary to

meet communications mechanism length restrictions. The contents

of the padding -- that is, the contents of any data past the end

of the message formats shown in this document -- are reserved and

must follow the rules for reserved fields defined in the

MSCP Control Message Formats Page 5-2

5.1 Generic Control Message Format

following section. (i.e., such padding must contain zeros).

The fields in the message header are interpreted as follows:

command reference number

 A 32 bit, unique, non-zero number used to identify host

 commands. Class drivers should supply a unique reference

 number in each command that they send to an MSCP server. The

 MSCP server copies the reference number to the command’s end

 message and to all error log messages that relate to that

 specific command. The MSCP server supplies a reference

 number of zero in attention messages and in error log

 messages that do not relate to a specific host command. A

 class driver may supply a zero reference number if it does

 not need to associate a command with its end message.

 Command reference numbers must be unique across all commands

 that are outstanding on the same connection. That is, they

 must be unique across all outstanding commands issued by a

 single class driver (host) to a single MSCP server. The

 class driver may re-use a command’s reference number when the

 command is no longer outstanding -- i.e., after receiving the

 command’s end message or after re-synchronizing with the MSCP

 server. Command reference numbers need not be unique for

 commands issued by different class drivers -- i.e., commands

 issued by different hosts or commands for different MSCP

 servers from the same host. Therefore controllers must

 internally use the combination of a command reference number

 and the connection on which the command was received as the

 unique identifier of an outstanding command.

 Command reference numbers are not interpreted in any way by

 MSCP servers. Their purpose is to provide a unique

 identifier by which class drivers can name commands. They

 are used by class drivers to match end messages and error log

 messages with the corresponding command message and to

 identify the object of an ABORT or GET COMMAND STATUS

 COMMAND.

unit number

 Identifies the specific unit within the device class to which

 the message applies. This value is the binary equivalent of

 the decimal unit number displayed by the unit select

 mechanism.

opcode

 Identifies the meaning or purpose of the message. In

 messages sent from a class driver to an MSCP server, this

 field specifies the operation or command to be performed. In

 messages sent from the controller to the class driver, this

 field specifies whether this is an end message or an

MSCP Control Message Formats Page 5-3

5.1 Generic Control Message Format

 attention message. The opcode of an end message also

 identifies the type (opcode) of the command to which the end

 message corresponds. A message’s opcode implicitly specifies

 the length and format of the message, including the

 interpretation of any parameters that are present.

modifiers or status

 This field has different formats in command messages and end

 messages, and is reserved in attention messages. In command

 messages this field has the following format:

 31 16 15 8 7 0

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 The "modifiers" field contains bit flags that modify the

 operation identified by "opcode", or zero if no modifiers are

 specified.

 In end messages this field has the following format:

 31 16 15 8 7 0

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 The "status" field identifies the completion status of the

 command; the "flags" field contains bit flags, called end

 flags, that report certain conditions that are disjoint from

 normal completion status of a command. These fields are

 further described in Sections "End Message Format" and

 "Status Codes".

5.2 Reserved and Undefined Fields

Reserved fields are those fields that are intended for possible

future extensions to MSCP. The use of such fields must follow

certain rules, in order to ensure that such future extensions can

be upwards compatible with the current version of MSCP. In

general, the sender of a message must supply the value zero in

all reserved fields. The action for a message receiver varies,

and is discussed below.

An undefined field is just that -- its contents are controller

implementation dependent, and therefore cannot be used in any

meaningful way by class drivers. Undefined fields are provided

in order to simplify controller implementation. Class drivers

must ignore the contents of undefined fields.

MSCP Control Message Formats Page 5-4

5.2 Reserved and Undefined Fields

A field, as used in this discussion, may have any length. In

particular, it may be an individual bit of a flags word or byte

as well as an entire byte, word, or whatever.

Class drivers must supply the value zero in the reserved fields

of all messages (commands) that they send to a controller, and

must also ignore the contents of reserved fields in all the

messages (end messages, attention messages, and error log

messages) that they receive from an MSCP server. MSCP servers

must supply the value zero in the reserved fields of all messages

(end messages, attention messages, and error log messages) that

they send to class drivers. MSCP servers must either ignore the

contents of reserved fields in the messages (commands) that they

receive from class drivers or verify that the contents are zero;

the command is treated as invalid if the contents are non-zero.

Whether or not an MSCP server verifies that reserved fields are

zero is controller dependent, and need not be consistent for all

reserved fields.

Many controllers generate command end messages by simply

modifying the commands’ command messages. That is, the

controller copies a command message into an internal buffer,

modifies it in place during execution of the command, then sends

the resulting contents of the internal buffer as the command’s

end message. To simplify such an implementation, controllers may

merely "echo" command message reserved fields when the

corresponding field in the end message should be zero. More

precisely, if some field in the end message of a command should

be zero, and the corresponding (same position) field in the

command’s command message is a reserved field, the controller may

copy the reserved field from the command message to the end

message rather than explicitly zeroing the field in the end

message.

The above paragraphs have listed all of the allowable controller

actions when a controller receives a command message with a

non-zero value in a reserved field. That is, when a controller

receives a command message with a non-zero value in a reserved

field it must do one of the following:

 1. Reject the command as invalid and return an Invalid

 Command end message.

 2. Totally ignore the non-zero contents of the reserved

 field. That is, the command’s execution, results, and

 end message contents are totally unaffected by the

 non-zero value.

 3. If the corresponding field in the end message should

 have a zero value, echo the contents of the reserved

 field in the command message as the value of the field

 in the end message. In all other ways totally ignore

 the non-zero contents of the reserved field. That is,

 the command’s execution, results, and the contents of

MSCP Control Message Formats Page 5-5

5.2 Reserved and Undefined Fields

 all other fields in the end message are totally

 unaffected by the non-zero value.

Note that option 3 is primarily of use when a field is reserved

in both command and end messages.

Note that controllers must implement option 1 whenever the

internal functioning of the controller may be altered if a

reserved field contains a non-zero value.

5.3 Transfer Command Message Format

Although the parameters and their layout is command (opcode)

dependent, many commands perform data transfers and thus use

similar sets of parameters. Therefore data transfer related

parameters are always laid out as follows:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- buffer ---+

 | |

 +--- descriptor ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

where these parameters are interpreted as follows:

byte count

 The total requested length of the data transfer in bytes.

 For disk class devices, the "byte count" must meed the

 requirements described in the next paragraph.

 If the "logical block number" field identifies a logical

 block in the host area of the disk volume (i.e., the "logical

 block number" is less than the "unit size" returned in the

 ONLINE and SET UNIT CHARACTERISTICS end messages), then the

 "byte count" must be less than or equal to the following

 maximum byte count:

 (unit size - logical block number) * block size

MSCP Control Message Formats Page 5-6

5.3 Transfer Command Message Format

 where "unit size" is the unit’s host area size (returned in

 the ONLINE and SET UNIT CHARACTERISTICS end messages),

 "logical block number" is the contents of the "logical block

 number" field in the command message, and "block size" is the

 volume’s block size, either 512 or 576 bytes. The controller

 or MSCP server must check that the "byte count" is less than

 or equal to the above maximum. That is, the controller or

 MSCP server must reject any transfer command that begins in

 the host area of a disk volume and attempts to continue into

 the volume’s Replacement and Caching Table (RCT). An

 "Invalid Command" status code with an "Invalid Byte Count"

 sub-code must be returned if this restriction is violated.

 If the "logical block number" field identifies a logical

 block in the disk volume’s Replacement and Caching Table

 (RCT) (i.e., the "logical block number" is greater than or

 equal to the "unit size" returned in the ONLINE and SET UNIT

 CHARACTERISTICS end messages), then the "byte count" must be

 exactly the sector size (either 512 or 576 bytes). If a

 different "byte count" value is provided, the controller may

 either perform the transfer with the specified "byte count"

 or else return an "Invalid Command" status code with an

 "Invalid Byte Count" sub-code.

 For all disk transfer commands that contain "buffer

 descriptors" (i.e., all transfer commands except ACCESS and

 ERASE), the "byte count" must also be less than or equal to

 the size of the buffer identified by "buffer descriptor".

 Note that "buffer descriptor", and thus the size of the

 buffer, is inherently communications mechanism dependent.

 The size of a buffer is not necessarily available to the MSCP

 server until it attempts to transfer past the end of the

 buffer. A "Host Buffer Access Error" status code is returned

 if the "byte count" exceeds the length of the buffer. Note

 that such errors are not necessarily distinguishable from

 other causes of "Host Buffer Access Errors".

 For disk transfer commands only, some communications

 mechanisms may prohibit odd "byte count" values. A "Host

 Buffer Access Error" status code is returned if the "byte

 count" is an illegal odd byte count.

 "Byte count" values that exceed any of the maximum values

 described above may be detected either before the transfer is

 initiated or when the transfer attempts to cross the boundary

 from legal to invalid byte counts. If detected before the

 transfer is initiated, the MSCP server must not transfer any

 data and must return zero in the "byte count" field of the

 end message. If detected when the transfer attempts to cross

 the boundary, the MSCP server must transfer all data up to

 the maximum legal byte count and return the maximum legal

 byte count in the "byte count" field of the end message;

 data must not be transferred past the maximum legal byte

 count. Which algorithm an MSCP server uses for detecting

MSCP Control Message Formats Page 5-7

5.3 Transfer Command Message Format

 byte counts that are too large is controller dependent.

buffer descriptor

 Communication mechanism dependent identification of the host

 buffer to use for the data transfer. The information encoded

 in this 12 byte (96 bit) field includes:

 o A host identifier (port or node identification).

 o The name of a buffer on the host.

 Note that the inclusion of a host identifier allows for third

 party transfers. The buffer descriptor formats used by

 various communication mechanisms are listed in Appendix D.

logical block number

 The logical block number (position) on the disk volume at

 which to start the data transfer. This value must not

 identify a block past the end of the volume’s Replacement and

 Caching Table (RCT). Section "Disk Geometry and Format"

 describes the mapping of logical block numbers to disk volume

 regions. This error causes the command to be rejected with

 an "Invalid Command" status code and an "Invalid Logical

 Block Number" sub-code.

5.4 Command Modifiers

The allowable modifiers on a command are command (opcode)

dependent. The individual command descriptions list the

allowable modifiers for each command. All modifiers that are not

explicitly allowed for a command are reserved, and must be

treated in accordance with the requirements for reserved fields

described in Section "Reserved and Undefined Fields". Modifiers

that are only allowed on one command are described in that

command’s description. Modifiers that are common to many

commands are described below:

Compare

 Applicable to data transfer commands. After the transfer,

 the data will be read back from the transfer destination and

 verified against the original data re-obtained from the

 source. Specifying this modifier is similar, but not

 identical, to following the transfer command with a COMPARE

 HOST DATA command. In particular, if the compare operation

 fails, an error log message is generated (if enabled) and the

 original transfer operation retried. (With the COMPARE HOST

 DATA command, an error log message must not be generated on

 compare errors and retries are unnecessary, although

 innocuous and therefore allowable). See Section "Compare

MSCP Control Message Formats Page 5-8

5.4 Command Modifiers

 Operations", for a more detailed description of this

 modifier’s effects.

Express Request

 Applicable to non-sequential commands. This modifier

 requests that the controller ignore its normal optimization

 policies in order to complete this command as quickly as

 possible. The exact implementation of express requests is

 controller dependent -- in general the controller will

 complete some or all of its outstanding commands before

 completing an express request.

 Use of express requests disables the normal controller

 guarantees that ensure that all commands are serviced in a

 timely manner. If express requests are repeatedly issued,

 some or all other outstanding commands may time out (i.e.,

 never be completed).

 Express requests do NOT override sequential command execution

 guarantees. Some controllers may completely ignore the

 express request modifier; the exact treatment of express

 requests should be described in a controller’s Functional

 Specification.

Force Error

 Applicable to write commands. Causes the data to be written

 with the forced error indicator set, so that all attempts to

 read the data will fail. The error will be preserved until

 the next time the block is written. The forced errors

 produced with this modifier must be recognized by the

 controller as deliberate and never reported to the error log.

Suppress Error Correction

 Suppresses error correction mechanisms, such as ECC

 correction. Error recovery mechanisms, such as retries, are

 not affected by this modifier. This modifier, in effect,

 lowers the threshold at which an error is considered to be

 uncorrectable. It typically lowers the threshold to zero,

 although that is not required; since error correction is

 drive type dependent, the lowered error correction threshold

 is also drive type dependent. If a drive has several error

 correction mechanisms, it is permissible for this modifier to

 suppress some and not affect others.

Suppress Error Recovery

 Suppresses most error recovery mechanisms, such as read

 retries. Error correction mechanisms, such as ECC

 correction, and some error recovery mechanisms, such as seek

 retry, are not affected by this modifier. The exact

 definition of which error recovery mechanisms are suppressed

MSCP Control Message Formats Page 5-9

5.4 Command Modifiers

 and which are not affected is drive type dependent.

5.5 End Message Format

An MSCP server sends an end message to a class driver to report

completion of a command. The generic end message format is as

follows:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

The command reference number and unit number are copied from the

command message. The remaining fields are as follows:

endcode

 Identifies this message as an end message and the type of

 command (opcode) that this is an end message for. This field

 implicitly specifies the format and interpretation of the

 parameters.

flags

 Bit flags, collectively called end flags, used to report

 various conditions detected due to this command but not

 directly related to success or failure. The following flags

 are defined:

 Bad Block Reported

 Set if one or more bad blocks were detected. Indicates

 that the host should replace the bad block identified in

 the "first bad block" field.

 Bad Blocks Unreported

MSCP Control Message Formats Page 5-10

5.5 End Message Format

 Set if one or more bad blocks were detected and not

 reported in the "first bad block" field. That is, two or

 more bad blocks were detected and the "first bad block"

 field only reports the first bad block in the transfer.

 Error Log Generated

 Set if one or more error log messages were generated that

 refer to this command -- i.e., that contain this

 command’s command reference number. This flag allows the

 host to save any outstanding command context that it

 wishes to include in the error log. The MSCP server must

 send the error log messages either before or shortly

 after it sends the end message containing this flag.

 All other bits in this field are reserved, and must be

 treated in accordance with the requirements for reserved

 fields described in Section "Reserved and Undefined Fields".

status

 The modifiers field is used for a completion status code.

 The status code indicates whether the operation was

 successfully completed or, if it wasn’t successful, what type

 of error occurred. Note that recoverable errors are reported

 as successful completion of the command. All errors, whether

 recoverable or not, are reported in a separate error log

 message if they should be logged.

 If several errors occur in a transfer operation, the status

 code reports the first error starting from the beginning of

 the transfer (i.e., the lowest byte count or lowest logical

 block number). The only exception is transfer commands that

 include a compare operation (i.e., read-compare and

 write-compare operations); errors in the original transfer

 always take precedence over errors during the compare

 operation.

 If a "Forced Error" and some other error occur at th e same

 point (same byte count or logical block number) within a

 transfer operation, the other error must be reported. If a

 "Compare Error" and some other error which is not a "Forced

 Error" occur at the same point within a transfer operation,

 the other error must be reported. If a "Forced Error" and a

 "Compare Error" both occur at the same point, and no other

 error occurs at that point, the "Compare Error" must be

 reported. Otherwise, which error of multiple errors

 occurring at the same point should be reported is controller

 dependent. An alternative way of stating this is that

 "Forced Errors" are the error of last resort and that

 "Compare Errors" are the error of second to last resort.

MSCP Control Message Formats Page 5-11

5.5 End Message Format

 If several errors occur in a non-transfer operation, the

 error that is reported is controller dependent unless the

 individual command description states otherwise.

byte count

 In transfer command end messages, the number of bytes

 successfully transferred, counting from the start of the

 transfer to the first error (i.e., the lowest byte count or

 lowest logical block number with an error). Data that

 follows the first error is not counted, even if transferred

 successfully. The only exception is transfer commands that

 include a compare operation (i.e., read-compare and

 write-compare operations); errors in the original transfer

 always take precedence over errors during the compare

 operation.

 The controller must have successfully transferred all data up

 to the point identified by "byte count". Furthermore, the

 error identified by "status" must have actually occurred at

 the position identified by "byte count". The state of the

 transfer following the position identified by "byte count" is

 undefined. None of the transfer following "byte count" may

 have been performed or attempted, all of it may have been

 attempted (with unknown success), or some parts may have been

 attempted and others not.

 Again, the only exception to this is transfer commands that

 include a compare operation. Such a command makes two passes

 over the data; one for the original transfer and another for

 the compare operation. For most errors, there is no way to

 determine in which pass the error was detected. Therefore

 the only guarantee is that the original transfer was

 performed up to the point identified by "byte count" without

 detecting any errors; the compare operation may or may not

 have been performed up to that point. If a "Compare Error"

 is reported, then both the original transfer and the compare

 operation have been successfully performed up to the point

 identified by "byte count"; the state of both the original

 transfer and the compare operation after that point, however,

 is undefined. This implies that the compare pass of a

 transfer command that includes a compare operation may be

 done for the entire transfer as a unit, block by block, or

 anywhere in between.

 For disk class devices, the granularity of the byte count on

 errors (i.e., the resolution with which the point of error is

 identified) need not be any smaller than the volume’s block

 size. That is, the byte count need only identify the block

 in which the error occurred, rather than the exact word or

 byte. In particular, the byte count returned with such

 errors as "Compare Errors" and "Host Buffer Access Errors"

 need only identify the block in which the error occurred,

 rather than the exact word or byte. Note that a block is

MSCP Control Message Formats Page 5-12

5.5 End Message Format

 identified by the number of the first byte in the block.

 Controllers may optionally provide finer granularity for the

 byte count field on errors. If an error is not reported,

 controllers must return the exact byte count that was in the

 command message.

 Not present in non-transfer command end messages.

first bad block

 In disk transfer command end messages, the logical block

 number of the first bad block (i.e., the bad block with the

 lowest logical block number) detected during the transfer

 that the host should replace. Only valid if the "Bad Block

 Reported" flag is set; undefined (garbage) if the "Bad Block

 Reported" flag is clear.

 Not present in non-transfer command end messages.

5.6 Status Codes

The "status code" field is divided into a 5-bit major status code

and an 11-bit status sub-code arranged as follows:

 15 0

 +-----------------+---------+

 | sub-code | code |

 +-----------------+---------+

The "event code" field of error log messages has the identical

structure and encoding. Errors that are reported in both an end

message and an error log message use identical values for the

"status code" and "event code" fields. The same value may not be

used to report a different type of event as a status code than as

an event code.

The 5-bit major status code conveys the status information that

hosts need for normal operation. Therefore the major status

codes are a formal part of MSCP. All controllers must return the

same major status codes for similar situations.

The 11-bit sub-code exists to specify the exact error or unusual

situation encountered with very fine detail. As such it is

primarily used for diagnostic purposes, and hosts should not need

to examine it during normal operation.

Sub-codes related to protocol or state errors are a formal part

of MSCP. All controllers must return the same sub-codes for

protocol or state errors. These sub-codes are generally bit

flags, allowing several causes of the major status code to be

reported.

MSCP Control Message Formats Page 5-13

5.6 Status Codes

Sub-codes related to controller and/or drive errors, however,

must be allowed to vary from one controller or drive to another.

There is no requirement that the same sub-codes be returned for

similar drive or controller errors. These sub-codes are

generally specific values, corresponding to one specific event or

error. Each sub-code must have the same meaning whenever it is

used. It is the use of a sub-code that may vary (i.e., whether

or not a specific controller returns that sub-code), not its

meaning. The defined sub-codes are listed in Appendix B; this

list may expand (via an ECO to MSCP) whenever a new drive or

controller type is introduced.

The major status codes that may be returned in end message

"status code" fields are listed below along with the general use

made of sub-codes. The actual sub-codes used are listed in

Appendix B. Those sub-codes that are a formal part of MSCP are

also listed in the descriptions of the commands that may return

them.

Success

 The command was successfully completed. This status code may

 also be returned, for some commands, if the intended effect

 of the command has already been accomplished (i.e.,

 requesting a drive that isn’t spinning to spin-down). The

 sub-code consists of bit flags used to report various

 "alternate" forms of success; see the individual command

 descriptions for details.

 The status code value associated with "Success" is, by

 definition, zero. Sub-code value zero (i.e., no sub-code

 bits set) is "Normal" success, and implies normal completion

 of a command. One sub-code bit, the "Duplicate Unit Number"

 bit, is common to many commands. This bit, when set, implies

 that the unit is "Unit-Online" and the command succeeded, but

 that the unit has a duplicate unit number. The unit will

 become "Unit-Offline", due to the duplicate unit number, as

 soon as it ceases to be "Unit-Online". Other "Success"

 sub-code bits are unique to a particular command, and are

 described under the individual command descriptions.

Invalid Command

 This status code is used for two purposes:

 1. In normal command end messages, it is used to report

 invalid parameter values (e.g., bad logical block

 number). Some controllers may not detect certain invalid

 parameters until after performing some part of the

 command. For example, a byte count that runs past the

 end of a disk may not be detected until the transfer has

 been performed up to the end of the disk.

MSCP Control Message Formats Page 5-14

5.6 Status Codes

 2. In the Invalid Command End Message, it is used to report

 invalid MSCP commands (protocol errors). A command is

 invalid if some field contains a reserved value or the

 command message was too short to contain all the

 parameters required by the opcode.

 Note that an unknown unit number does not constitute an

 invalid parameter or command; unknown unit numbers are

 treated as if the unit is "Unit-Offline".

 The sub-code is used to report the offset, within the command

 message, of the field in error. Bits 8 through 15 (the high

 byte) of the "status code" field contain the byte offset from

 the start of the message to the field in error. Multi-byte

 fields are identified by the offset to their lowest byte.

 Single byte fields positioned at an odd offset may be

 identified, at the controller’s option, by either their

 actual offset or their offset minus one. That is, offsets

 may be truncated to an even value. Sub-code zero is used to

 report that the command message was too short to contain the

 parameters required by the command’s opcode. Note that any

 value is valid for the field at offset zero, the "command

 reference number".

 Note that protocol errors, reported via this status code and

 the Invalid Command end message, may cause the MSCP server to

 become "Controller-Available" relative to the class driver

 that issued the invalid command.

Command Aborted

 The command was aborted by an ABORT command. The end message

 for the aborted command (i.e., the end message containing the

 "Command Aborted" status code) has the normal format for the

 command and all fields are valid. In particular, the "byte

 count" field identifies how far a transfer command was

 completed before it was aborted. The status of the transfer

 beyond the returned byte count is undefined. Sub-codes are

 not used.

Unit-Offline

 The unit identified by the "unit number" field of the end

 message is in the "Unit-Offline" state. The sub-code

 consists of bit flags that indicate why the unit is

 "Unit-Offline". Note that there may be several reasons for

 the unit being "Unit-Offline". If the sub-code is zero, it

 implies that the unit is unknown -- i.e., the controller

 knows of no unit with the specified unit number.

Unit-Available

 The unit identified by the "unit number" field of the end

MSCP Control Message Formats Page 5-15

5.6 Status Codes

 message is in the "Unit-Available" state. The sub-code is

 always zero.

Media Format Error

 Only returned by the ONLINE command for disk class devices.

 The volume mounted on the unit appears to be formatted

 incorrectly, so that it must be reformatted (and all data

 lost) before it may be used. This error is also returned if

 the volume is formatted with 576 byte sectors and the

 controller only supports 512 byte sectors. Note that the

 volume may only "appear" to be formatted incorrectly; the

 typical cause of this error is a fault in the drive’s

 read/write electronics. If this is the case, the volume can

 usually be successfully accessed on another drive.

 Controllers must treat the unit as if an AVAILABLE command

 with the "Spin-down" modifier set had been issued for it

 whenever they return this error code. The unit is therefore

 always in the "Unit-Available" state with AVAILABLE attention

 messages suppressed until a human operator changes the volume

 or spins-up the unit. The sub-code reports which integrity

 check the volume failed; it is volume format, and therefore

 drive type, dependent.

Write Protected

 The unit identified by the "unit number" field of the end

 message is-write protected and the command required that data

 be written onto the drive. The sub-code consists of bit

 flags indicating the reasons why the unit is write protected.

Compare Error

 A COMPARE HOST DATA command, a read compare operation, or a

 write compare operation found different data in the host

 buffer and the unit identified by the "unit number" field of

 the end message. The sub-code is always zero.

Data Error

 Invalid or uncorrectable data was obtained from a drive, as

 determined by internal error detecting or correcting codes.

 The sub-code is used to report the exact error detected.

 Sub-code zero is-used for "Forced Errors". All errors caused

 by the "Force Error" modifier must be reported with sub-code

 zero.

Host Buffer Access Error

 The controller encountered an error when attempting to access

 a buffer in host memory. The sub-code is used to report the

 exact error encountered. This status code is also returned

 whenever the command’s buffer descriptor or byte count

MSCP Control Message Formats Page 5-16

5.6 Status Codes

 violate any communications mechanism dependent restrictions.

 Note that this status code is NOT used to report errors

 encountered when transferring command, end, attention, or

 error log messages between the controller and a host. Such

 errors are reported by terminating the connection between the

 class driver and MSCP server. The mechanism for reporting

 such errors to the host’s error log is communications

 mechanism dependent.

Controller Error

 The controller encountered an internal controller error. The

 sub-code is used to report the exact error encountered. An

 internal controller error is reported as a "Controller Error"

 if and only if the controller has reasonable grounds to trust

 its sanity and expects to complete, either successfully or

 with an appropriate error status code, all of its outstanding

 commands. All more severe controller errors are reported by

 terminating the connection between the controller’s MSCP

 server and the host class driver. This is in addition, of

 course, to attempting to generate an error log message.

 Sub-code zero of this status code is reserved for host

 detected command timeouts; all other sub-codes are

 controller dependent.

 Note that some controller errors may be reported using other

 error codes, if an internal controller error causes the

 controller to mis-diagnose the error.

Drive Error

 The controller discovered an error within a drive. Such

 errors are typically, but not always, mechanical in nature,

 since most non-mechanical errors are reported as "Data

 Errors". The sub-code is used to report the exact error

 encountered.

 In many cases a "Drive Error" will indicate that the unit is

 broken or inoperative. If this occurs, the "Drive Error"

 should be reported once and the unit should subsequently be

 reported as being "Unit-Offline" due to being inoperative.

The status codes that may be returned for a specific command are

command (opcode) dependent. The status codes that may be

returned for each command and any special meaning that they have

specific to the command are listed in the command descriptions.

Note that the format of a command’s end message is solely

determined by its opcode; the status code returned in the end

message does not affect the end message’s format. The only two

exceptions, protocol errors and serious exceptions, have unique

end messages that contain a special opcode.

MSCP Control Message Formats Page 5-17

5.7 Unit Flags

5.7 Unit Flags

Several messages contain a field called the unit flags field.

This field consists of unit characteristics bit flags. Some unit

flags are host settable; host settable unit flags may be set or

cleared with the ONLINE and SET UNIT CHARACTERISTICS commands.

Other unit flags are non-host settable; the controller must

ignore the values supplied by hosts for such flags, and always

return the correct value from the unit’s characteristics. A few

unit flags may be host settable or non-host settable, depending

on the presence or absence of a command modifier.

Many unit flags, including all host settable unit flags, are only

valid when the unit is "Unit-Online". The values returned for

such unit flags are undefined if the unit is "Unit-Offline" or

"Unit-Available". A few non-host settable unit flags are valid

when the unit is "Unit-Available" and during certain

"Unit-Offline" sub-states; these flags are identified in the

individual flag descriptions below.

Those bits in the "unit flags" word that are not defined as unit

flags are reserved, and must be treated in accordance with the

requirements for reserved fields described in Section "Reserved

and Undefined Fields".

The unit characteristics flags are as follows:

Compare Reads

 A host settable characteristic; set if all read transfers

 should be verified with a compare operation. Equivalent to

 specifying the "Compare" modifier on all READ commands.

 Undefined when the unit is either "Unit-Available" or

 "Unit-Offline".

Compare Writes

 A host settable characteristic; set if all write transfers

 should be verified with a compare operation. Equivalent to

 specifying the "Compare" modifier on all WRITE commands.

 Undefined when the unit is either "Unit-Available" or

 "Unit-Off line" .

Removable Media

 A non-host settable characteristic; set if unit has

 removable media. Valid whenever the controller can determine

 the unit’s characteristics; see the descriptions of the GET

 UNIT STATUS, ONLINE, and SET UNIT CHARACTERISTICS commands

 for more information.

MSCP Control Message Formats Page 5-18

5.7 Unit Flags

Write Protect (hardware)

 A non-host settable characteristic; set if and only if the

 unit’s write protect mechanism is activated, causing the unit

 to be Hardware Write Protected. All write operations,

 including attempts to perform bad block replacement or

 otherwise modify the RCT, will be rejected when this flag is

 set. See Section "Write Protection". Undefined when the

 unit is either "Unit-Available" or "Unit-Offline".

Write Protect (software)

 Normally non-host settable characteristic; a host settable

 characteristic if the "Enable Set Write Protect" command

 modifier is asserted in the ONLINE or SET UNIT

 CHARACTERISTICS commands. Set if and only if the unit is

 Software Write Protected. See Section "Write Protection".

 Undefined when the unit is either "Unit-Available" or

 "Unit-Offline".

576 Byte Sectors

 Normally a non-host settable characteristic; a host settable

 characteristic if the controller supports 576 byte sectors

 and the "Ignore Media Format Error" command modifier is

 asserted in the ONLINE command. Set if the volume mounted on

 the unit has 576 byte sectors. Undefined when the unit is

 either "Unit-Available" or "Unit-Offline".

5.8 Controller Flags

The SET CONTROLLER CHARACTERISTICS command is used to set and

clear host settable controller flags, and to obtain the values of

non-host settable controller flags. Host settable controller

flags are stored on a per class driver basis; each class driver

may have different settings for host settable controller flags.

Non-host settable controller flags are fixed controller

characteristics, and therefore common to all class drivers of the

same device class. The controller must ignore the values

supplied by hosts for non-host settable controller flags, and

always return the correct value from the controller’s

characteristics.

All host settable controller flags are, by default, clear

whenever a class driver becomes "Controller-Online" to an MSCP

server. The flags remain clear until the class driver sets them

with a SET CONTROLLER CHARACTERISTICS command or until the class

driver is no longer "Controller-Online" to the MSCP server.

MSCP Control Message Formats Page 5-19

5.8 Controller Flags

Those bits in the "controller flags" word that are not defined as

controller flags are reserved, and must be treated in accordance

with the requirements for reserved fields described in Section

"Reserved and Undefined Fields".

The controller flags are as follows:

Enable Attention Messages

 A host settable controller characteristic; set if attention

 messages should be sent to this host. Note that this flag is

 applicable to all attention messages, regardless of type.

Enable Miscellaneous Error Log Messages

 A host settable controller characteristic; set if error log

 messages that do not relate to a specific command should be

 sent to this host.

Enable Other Hosts’ Error Log Messages

 A host settable controller characteristic; set if error log

 messages that relate to commands issued by other hosts should

 be sent to this host.

Enable This Host’s Error Log Messages

 A host settable controller characteristic; set if error log

 messages that relate to commands issued by this host should

 be sent to this host.

576 Byte Sectors

 A non-host settable controller characteristic; set if the

 controller supports disks formatted with 576 byte sectors.

 Note that this flag is only applicable to the disk device

 class.

 CHAPTER 6

 MINIMAL DISK MSCP SUBSET

This section first describes the unit and controller flags that

are used with the minimal Disk MSCP subset, then it describes

each command to which controllers must respond, and finally it

describes the attention messages that the controller must

generate. The controller must respond with the Invalid Command

end message and an "Invalid Opcode" status code to any command

that is not listed here.

Each command description includes the command’s category or

execution order (see Section "Command Category and Execution

Order"), the command message format, a list of the allowable

command modifiers, the command’s end message format, a list of

possible status codes, and a description of the command’s

effects. Use of any command modifiers other than the ones listed

for an individual command is reserved, and must be treated in

accordance with the requirements for reserved fields described in

Section "Reserved and Undefined Fields".

6.1 This section deliberately omitted

Minimal Disk MSCP Subset Page 6-2

6.2 This section deliberately omitted

Minimal Disk MSCP Subset Page 6-3

6.3 ABORT Command

6.3 ABORT Command

Command category:

 Immediate

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | outstanding reference number |

 +-------------------------------+

 unit number

 Must be the same as the "unit number" field in the

 outstanding command to be aborted. This allows

 controllers to optimize their search for the outstanding

 command. If the incorrect unit number is supplied, some

 controllers may erroneously conclude that the command is

 no longer outstanding and therefore not abort the

 command.

 outstanding reference umber

 Command reference number of the command to be aborted.

 Note that a class driver may only abort commands that it

 itself has issued. This derives from the fact that

 command reference numbers are implicitly qualified by the

 connection on which the command was issued, so that class

 drivers have no way of naming commands issued by a

 different class driver.

Allowable modifiers:

 none

Minimal Disk MSCP Subset Page 6-4

6.3 ABORT Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | outstanding reference number |

 +-------------------------------+

 outstanding reference number

 The command reference number of the command that was

 aborted. Identical to the value supplied in the ABORT

 command message.

Status Codes:

 Success (sub-code "Normal").

Description:

 The ABORT command causes a specified command to be aborted at

 the earliest time convenient for the controller. The

 specified command must, however, either be aborted or be

 completed within the controller timeout interval. See

 Section "Command Timeouts" for a discussion of the

 interaction between ABORT and command timeouts.

 The ABORT command always succeeds; if the command to be

 aborted is not known to the controller, this implies that it

 has already completed and the ABORT command will be ignored.

 The controller always returns the "Normal" status code in the

 ABORT command’s end message.

 The controller may ignore the ABORT command if the command

 being aborted will always complete within the controller

 timeout interval.

 The class driver must wait for the aborted command’s end

 message, or else re-synchronize with the MSCP server, before

 reusing the aborted command’s command reference number or

 releasing the aborted command’s context. If the command was

 aborted, its end message will contain the "Command Aborted"

 status code; otherwise the command was completed. The class

 driver may ignore the ABORT command’s end message. Note that

 the class driver may receive the ABORT command’s end message

 either before or after the aborted command’s end message.

Minimal Disk MSCP Subset Page 6-5

6.4 ACCESS Command

6.4 ACCESS Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | reserved |

 +--- ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

Allowable modifiers:

 Express Request

 Suppress Error Correction

 Suppress Error Recovery

Minimal Disk MSCP Subset Page 6-6

6.4 ACCESS Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Byte Count")

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Data Error

 Controller Error

 Drive Error

Description:

 Data is read from the unit, checked for errors, and

 discarded. The purpose of this command is to verify that the

 designated data can be accessed (read) without error.

 This command is exactly equivalent in function, although not

 in performance, to a READ whose data is ignored by the host.

Minimal Disk MSCP Subset Page 6-7

6.5 AVAILABLE Command

6.5 AVAILABLE Command

Command category:

 Sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

Allowable modifiers:

 Spin-down

 Requests that the disk stop spinning and that the heads

 be unloaded. Note that the command completes as soon as

 the spin-down has been initiated, rather than waiting for

 the disk to stop spinning. The spin-down will not be

 initiated if this unit belongs to a multi-unit drive and

 this unit shares a spindle with some other unit that is

 "Unit-Online"; see Section "Multi-Unit Drives and

 Formatters". Regardless of whether or not the spin-down

 is actually initiated, AVAILABLE attention messages will

 be suppressed for this unit, both for this controller and

 for any other controllers to which the unit may be

 connected; see Section "Unit States".

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

Minimal Disk MSCP Subset Page 6-8

6.5 AVAILABLE Command

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Success (sub-code "Spin-down Ignored")

 The "Spin-down Ignored" sub-code bit flag is set if and

 only if the "Spin-down" modifier was specified and one or

 more other units with which this unit shares a spindle is

 still "Unit-Online", preventing this unit from spinning

 down. See Section "Multi-unit Drives and Formatters" for

 an explanation of shared spindles.

 Success (sub-code "Still Connected")

 The "Still Connected" sub-code bit flag is set if and

 only if this unit may potentially be accessed via another

 controller and one or more other units with which this

 unit shares an access path is still "Unit-Online",

 preventing this unit from being accessed via the other

 controller (if any). The "Still Connected" sub-code bit

 flag will always be set if the "Spin-down Ignored" bit

 flag is set. See Section "Multi-access Drives" for a

 discussion of access paths.

 Command Aborted

 The unit’s state has not changed.

 Unit-Off line

 Controller Error

 Drive Error

Description:

 All outstanding commands for the specified unit are

 completed, then the unit becomes "Unit-Available". If the

 "Spin-down" modifier was not specified, the unit is not

 already "Unit-Available", and no other units that share this

 unit’s access path are "Unit-Online" (i.e., the "Still

 Connected" status sub-code bit flag is clear), then an

 AVAILABLE attention message is sent by any other controller

 to which the unit is connected. The controller to which this

 command was sent need not itself send an AVAILABLE attention

 message.

 If the "Spin-down" modifier is specified, the disk spins down

 and its heads are unloaded, unless some other unit with which

 this unit shares a spindle is "Unit-Online". The disk may be

 spun up with an ONLINE command or by operator intervention.

 The "Spin-down" modifier also suppresses AVAILABLE attention

 messages for this unit, both for this controller and any

Minimal Disk MSCP Subset Page 6-9

6.5 AVAILABLE Command

 other controllers to which the unit may be connected. See

 Section "Unit States" for a discussion of suppressing

 AVAILABLE attention messages.

 This command will be accepted if the unit is "Unit-Online" or

 "Unit-Available". It is nugatory to issue this command to a

 unit that is "Unit-Available" unless the "Spin-down" modifier

 is specified. Assuming no other errors occur, the "Success"

 status code will be returned regardless of whether the unit

 was previously "Unit-Online" or "Unit-Available".

 If the unit was "Unit-Online" but had a duplicate unit number

 prior to the AVAILABLE command being issued, the AVAILABLE

 command may complete, at the controller’s option, with either

 a "Success" or a "Unit-Offline" status code. The

 "Unit-Offline" status code must have the "Duplicate Unit

 Number" sub-code flag set. The "Success" status code may or

 may not, at the controller’s option, have the "Duplicate Unit

 Number" sub-code flag set. Subsequent attempts to access the

 unit will return "Unit-Offline" status with the "Duplicate

 Unit Number" sub-code flag set unless the duplicate unit

 number has been eliminated.

Minimal Disk MSCP Subset Page 6-10

6.5 AVAILABLE Command

6.6 This section deliberately omitted

Minimal Disk MSCP Subset Page 6-11

6.7 COMPARE HOST DATA Command

6.7 COMPARE HOST DATA Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- buffer ---+

 | |

 +--- descriptor ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

Allowable modifiers:

 Express Request

 Suppress Error Correction

 Suppress Error Recovery

Minimal Disk MSCP Subset Page 6-12

6.7 COMPARE HOST DATA Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Byte Count")

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Compare Error

 Data Error

 Host Buffer Access Error

 Controller Error

 Drive Error

Description:

 Data is read from the unit and compared with the data in the

 host buffer. A "Compare Error" is reported unless the data

 is identical. Note that the occurrence of any other error,

 except a "Forced Error", at the same point as the "Compare

 Error" will override the "Compare Error". Note also that any

 "Compare Errors" detected by this command must NOT be

 reported to the error log.

Minimal Disk MSCP Subset Page 6-13

6.8 DETERMINE ACCESS PATHS Command

6.8 DETERMINE ACCESS PATHS Command

Command Category:

 see below

Command message format

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

Allowable modifiers:

 none

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

Status codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Controller Error

 Drive Error

Description:

Minimal Disk MSCP Subset Page 6-14

6.8 DETERMINE ACCESS PATHS Command

 Class drivers use this command to determine the topology of

 multi-access drive configurations. When sent to a unit that

 is "Unit-Online", it causes that unit and any other units

 that share its access path to identify themselves to any

 other controller to which they are connected. The MSCP

 servers in the other controllers will, as a result, become

 aware that the unit is online via the controller receiving

 this command. They will then send an ACCESS PATH attention

 message to their "Controller-Online" class drivers, thus

 informing the class drivers of the alternate access paths to

 the unit. This command must be treated as a no-op that

 always succeeds if the unit is incapable of being connected

 to more than one controller.

 The actual notification to another controller, and thus the

 sending of an ACCESS PATH attention message, is dependent on

 the proper functioning of the unit and both controllers.

 Furthermore, it need not be 100% reliable. That is, assuming

 the unit and both controllers are functioning properly, there

 need only be a high probability (better than 50%) that the

 other controller will in fact be notified and send an ACCESS

 PATH attention message. For this reason, plus the fact that

 the topology may change while the unit remains "Unit-Online",

 hosts that need to know multi-access drive topology must

 issue DETERMINE ACCESS PATHS commands to all "Unit-Online"

 units on a periodic basis, such as once every 5 to 15

 minutes.

 This command in no way affects the unit’s actual state to any

 controller. The unit remains "Unit-Online" via the receiving

 controller and remains "Unit-offline" via other controllers.

 Note, however, that this command may affect the unit’s

 "Unit-Offline" sub-state that is perceived by other

 controllers.

 The processing of this command may, and often will, cause a

 transient performance degradation for the specified unit.

 Controllers must consider this performance degradation when

 specifying their controller timeout interval.

 A controller may, at its option, treat this as either an

 Immediate, Sequential, or Non-sequential command. Host

 command timeout algorithms must treat this as a non-Immediate

 command.

Minimal Disk MSCP Subset Page 6-15

6.9 ERASE Command

6.9 ERASE Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | reserved |

 +--- ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

Allowable modifiers:

 Express Request

 Force Error

 Suppress Error Recovery

Minimal Disk MSCP Subset Page 6-16

6.9 ERASE Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Byte Count")

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Write Protected

 Controller Error

 Drive Error

Description:

 All data in the specified region of the unit is erased by

 overwriting it with zero.

 This command is exactly equivalent in function, although not

 in performance, to a WRITE command which references a buffer

 that the host has zeroed.

Minimal Disk MSCP Subset Page 6-17

6.9 ERASE Command

6.10 This section deliberately omitted

Minimal Disk MSCP Subset Page 6-18

6.11 GET COMMAND STATUS Command

6.11 GET COMMAND STATUS Command

Command category:

 Immediate

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | outstanding reference number |

 +-------------------------------+

 unit number

 Must be the same as the "unit number" field in the

 outstanding command whose status is to be obtained. This

 allows controllers to optimize their search for the

 outstanding command. If the incorrect unit number is

 supplied, some controllers may erroneously conclude that

 the command is no longer outstanding, leading to

 erroneous command timeouts.

 outstanding reference number

 The command reference number of the command whose status

 is to be obtained. Note that a class driver may only

 obtain the status of commands that it itself has issued.

 This derives from the fact that command reference numbers

 are implicitly qualified by the connection on which the

 command was issued, so that class drivers have no way of

 naming commands issued by a different class driver.

Allowable modifiers:

 none

Minimal Disk MSCP Subset Page 6-19

6.11 GET COMMAND STATUS Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | outstanding reference number |

 +-------------------------------+

 | command status |

 +-------------------------------+

 outstanding reference number

 The command reference number of the command whose status

 has been returned. Identical to the value supplied in

 the GET COMMAND STATUS command message.

 command status

 The amount of work remaining to be done to complete the

 command, expressed as an unsigned integer. This field is

 zero if the command is not known to the controller, such

 as when the command has already completed. This field

 should also be zero if the command has been aborted. The

 controller may also return zero in this field if it can

 guarantee that the command will complete within the

 controller timeout interval. The controller must never

 return a value of all ones (2**32-1) in this field, as

 that value is used to initialize the command timeout

 algorithm.

 The units in which this value is measured are arbitrary

 and may be controller, device type, and/or command

 dependent. However, the units must remain the same for a

 particular command for as long as that command is

 outstanding.

Status Codes:

 Success (sub-code "Normal")

Description:

 The GET COMMAND STATUS command is used to monitor the

 progress of a command towards completion. The command status

 measures the "doneness" of the command; the command status

 field is guaranteed to not increase over time. Furthermore,

 the command status of an MSCP server’s oldest outstanding

Minimal Disk MSCP Subset Page 6-20

6.11 GET COMMAND STATUS Command

 command is guaranteed to decrease within the controller

 timeout interval. This last feature may be used by a host

 class driver to detect an insane or malfunctioning

 controller; see Section "Command Timeouts" for more details.

 The GET COMMAND STATUS command always succeeds. If the

 command referenced by the "outstanding reference number" is

 not known to the MSCP server or has been aborted, then the

 MSCP server should return zero for its command status. The

 MSCP server may also return zero as the command status of any

 command that will always complete within the controller

 timeout interval. The MSCP server always returns the

 "Normal" status code in the GET COMMAND STATUS command’s end

 message.

Minimal Disk MSCP Subset Page 6-21

6.12 GET UNIT STATUS Command

6.12 GET UNIT STATUS Command

Command category:

 Immediate

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

Allowable modifiers:

 Next Unit

 Requests that the controller return the status of the

 next unit (in order of ascending unit numbers) that the

 controller knows to exist and whose unit number is

 greater than or equal to the unit number specified in the

 command. See Section "Unit States", for a detailed

 definition of which units must be acknowledged by this

 modifier.

 If this modifier is specified, the "unit number" field in

 the end message corresponds to the unit whose

 characteristics are being returned, and is typically not

 the same as the "unit number" field in the command

 message. If there are no units that are both known to

 the controller and whose unit numbers are greater than or

 equal to the unit number specified in the command

 message, then zero is returned in the "unit number" field

 of the end message. The remaining fields of the end

 message are identical to the values that would be

 returned for a GET UNIT STATUS command with a "unit

 number" of zero and the "Next Unit" modifier left

 unspecified.

Minimal Disk MSCP Subset Page 6-22

6.12 GET UNIT STATUS Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | unit flags |multi-unit code|

 +---------------+---------------+

 | reserved |

 +-------------------------------+

 | |

 +--- unit identifier ---+

 | |

 +-------------------------------+

 | media type identifier |

 +---------------+---------------+

 | reserved | shadow unit |

 +---------------+---------------+

 | group size | track size |

 +---------------+---------------+

 | reserved | cylinder size |

 +-------+-------+---------------+

 |copies | RBNs | RCT size |

 +-------+-------+---------------+

 The validity of the unit characteristics returned by this

 command varies with the unit’s state. Class drivers can

 determine which characteristics are valid by examining the

 values returned in the "status" and "unit identifier" fields.

 See the description below.

 status

 Encodes the current unit state ("Unit-Offline",

 "Unit-Available", "Unit-Online"). See status codes

 listed below.

 multi-unit code

 The low byte of this field identifies the access path

 between the controller and the unit. The high byte of

 this field identifies the spindle, within the access

 path, to which the unit belongs. See Section "Multi-unit

 Drives and Formatters" for more information.

 unit flags

 See Section "Unit Flags" under "MSCP Control Message

 Formats"

Minimal Disk MSCP Subset Page 6-23

6.12 GET UNIT STATUS Command

 unit identifier

 Uniquely identifies the unit among all devices accessible

 via MSCP; see Section "Controller and Unit Identifiers".

 media type identifier

 Identifies the type of media used by this unit, for use

 by host generic device allocation mechanisms; see

 Section "Media Type Identifiers".

 shadow unit

 Always identical to the "unit number" field.

 track size

 The number of logical blocks in a track, or zero if the

 concept of a track is inappropriate to this unit; see

 Section "Disk Geometry and Format".

 group size

 The number of tracks in a group, or zero if the concept

 of a group is inappropriate to this unit; see Section

 "Disk Geometry and Format". Note that this value must

 always be zero whenever "track size" is zero.

 cylinder size

 The number of groups in a cylinder, or zero if the

 concept of a cylinder is inappropriate to this unit; see

 Section "Disk Geometry and Format". Note that this value

 must always be zero whenever "group size" is zero.

 RCT size

 The difference between the starting logical block numbers

 of successive copies of the unit’s Replacement and

 Caching Table (RCT). Excepting only the last copy, this

 value is also the size of each copy of the RCT. See DEC

 Standard Disk Format.

 RBNs

 The number of replacement blocks per track. Note that

 this is the total number of replacement blocks on the

 unit if "track size" is zero, since then the entire unit

 is a single track. See DEC Standard Disk Format.

 copies

 The number of copies of the Replacement and Caching Table

 that are stored on the unit. See DEC Standard Disk

Minimal Disk MSCP Subset Page 6-24

6.12 GET UNIT STATUS Command

 Format.

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Both of these codes imply that the unit is "Unit-Online".

 Unit-Offline

 Unit-Available

 Controller Error

 Drive Error

 For both of these codes the class driver should assume

 that the unit is "Unit-Offline".

Description:

 The GET UNIT STATUS command returns the current state of a

 unit plus certain unit characteristics. In particular, the

 GET UNIT STATUS command is used to obtain host settable

 characteristics and those fixed unit characteristics that are

 not normally needed by the class driver.

 Class drivers can determine which of the returned unit

 characteristics are valid by examining the returned "status"

 and "unit identifier" fields. The following cases exist:

 1. "status" is "Success", implying that the unit is

 "Unit-Online". All characteristics are valid.

 2. "status" is "Unit-Available" or "Unit-Offline" and "unit

 identifier" is not zero. All unit flags except for the

 "Removable media" flag are undefined. All other

 characteristics are valid.

 3. "unit identifier" is zero. Only the "shadow unit"

 characteristic is valid. All other characteristics are

 undefined.

 The three cases listed above are the only cases that can

 occur.

 Rather than testing the entire quadword unit identifier, it

 is sufficient to merely test the high order word of the unit

 identifier, containing the class and model code bytes, to see

 if it is zero or not.

Minimal Disk MSCP Subset Page 6-25

6.12 GET UNIT STATUS Command

 Controllers must supply valid values for all characteristics

 whenever the unit is "Unit-Online". Controllers must supply

 a non-zero unit identifier and valid values for all

 characteristics except those noted above whenever the unit is

 "Unit-Available" or the unit is "Unit-Offline" solely due to

 being disabled or known. Controllers may or may not, at the

 controller’s option, provide valid characteristics when the

 unit is "Unit-Offline" for any other reason.

 The rules in the above paragraphs can be restated as follows:

 1. If "status" is "Success", then "unit identifier" must be

 non-zero and all characteristics must be valid.

 2. If "status" is "Unit-Available", then "unit identifier"

 must be non-zero and almost all characteristics must be

 valid.

 3. If "status" is "Unit-Offline" and the sole causes of the

 unit being offline are it being disabled or known, then

 "unit identifier" must be non-zero and almost all

 characteristics must be valid.

 4. If "unit identifier" is zero, then "status" must either

 be "Unit-Offline" with some reason other than the the

 unit being disabled or known indicated, or "status" must

 be "Controller Error" or "Drive Error". Virtually no

 characteristics need be valid.

Minimal Disk MSCP Subset Page 6-26

6.13 ONLINE Command

6.13 ONLINE Command

Command categories:

 Sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | unit flags | reserved |

 +---------------+---------------+

 | reserved |

 +-------------------------------+

 | |

 +--- reserved ---+

 | |

 +-------------------------------+

 | device dependent parameters |

 +---------------+---------------+

 | reserved | reserved |

 +---------------+---------------+

 unit flags

 Host settable unit flags; see Section "Unit Flags" under

 "MSCP Control Message Formats"

 If the unit is already "Unit-Online" to the class driver,

 then the class driver must specify the same values for

 controller supported host settable unit flags as are

 currently in effect on the unit. The controller may or

 may not, at its option, check that the flag values are

 the same. If it does check, then it must return an

 "Invalid Command" status code with "Invalid Unit Flags"

 sub-code if they are different. If the controller does

 not check that they are the same, then it must ignore the

 unit flags specified by the class driver and preserve the

 flag settings currently in effect on the unit. Note that

 this checking becomes mandatory, rather than optional, if

 the controller provides Multi-host Support.

 device dependent parameters

 Device and/or controller dependent device tuning

Minimal Disk MSCP Subset Page 6-27

6.13 ONLINE Command

 parameters. The value zero in this field means that

 default or normal tuning parameters should be used.

 Non-zero values for this field should normally be

 established through the system startup command file.

 Examples of the use of this field include selecting

 alternative optimization algorithms or enabling and

 disabling automatic (online) diagnosis of the unit.

Allowable modifiers:

 Allow Self Destruction

 Some controllers and/or drives are able to predict that a

 unit is in danger of imminent self destruction, and

 automatically spin-down and disable the unit to prevent

 its destruction. Such mechanisms typically sense an

 exponentially increasing (correctable) error rate,

 indicating that the disk surface has been contaminated

 with dust or other foreign objects. Units that have been

 disabled for this reason appear to be "Unit-Offline",

 with a sub-code indicating that they have been disabled

 by field service or a diagnostic. Therefore such a unit

 cannot normally be brought "Unit-Online".

 This modifier allows a host to bring a unit that has been

 so disabled "Unit-Online", even though the consequences

 for the unit may be fatal. For this reason THIS MODIFIER

 MUST NEVER BE USED UNLESS FIELD SERVICE EXPLICITLY

 DIRECTS A SITE TO DO SO. When imminent self destruction

 has been predicted for a unit, it is usually possible to

 make one "last ditch" copy of the unit before it dies

 completely, recovering all or most of the data on the

 unit. This modifier exists primarily to simplify support

 of such a "last ditch" copy. This modifier also provides

 a means, if necessary, to work around a diagnostic that

 is erroneously disabling a unit.

 This modifier must be supported by:

 1. Any controller that may disable a unit for the reason

 mentioned above.

 2. Any controller that may potentially be connected to a

 unit that can disable itself.

 3. Any controller that does not disable units itself,

 but that will respond properly if a drive is disabled

 by some other (more capable) controller.

 This modifier must be ignored if the unit has not been

 disabled or if the controller does not fall into any of

 the above categories.

Minimal Disk MSCP Subset Page 6-28

6.13 ONLINE Command

 Ignore Media Format Error

 Suppresses most checking for "Media Format Errors" and

 causes the "576 Byte Sectors" unit flag to be host

 settable.

 The controller uses the state of the "576 Byte Sectors"

 unit flag to determine whether the volume is formatted

 with 512 or 576 byte sectors, rather than determining the

 volume’s format from the volume itself. The "576 Byte

 Sectors" unit flag will be ignored by the controller, and

 returned clear, if either the controller or the unit do

 not support 576 byte sectors.

 Use of this modifier allows the host to set a unit to the

 wrong block or sector size. Reading a unit that is set

 to the wrong block or sector size may yield a mix of

 erroneous "Data Errors", "Drive Errors", and "Controller

 Errors". Writing a unit that is set to the wrong block

 or sector size may permanently corrupt the volume; the

 volume must be re-formatted if this occurs.

 Enable Set Write Protect

 Causes the "Write Protect" unit flag to be host settable.

 This modifier causes the state of the "Write Protect

 (software)" unit flag to be copied to the Software Write

 Protect flag for this unit; see Section "Write

 Protection".

Minimal Disk MSCP Subset Page 6-29

6.13 ONLINE Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | unit flags |multi-unit code|

 +---------------+---------------+

 | reserved |

 +-------------------------------+

 | |

 +--- unit identifier ---+

 | |

 +-------------------------------+

 | media type identifier |

 +---------------+---------------+

 | reserved | reserved |

 +---------------+---------------+

 | unit size |

 +-------------------------------+

 | volume serial number |

 +-------------------------------+

 The format and fields of the ONLINE command’s end message are

 identical to the SET UNIT CHARACTERISTICS command’s end

 message; see the field descriptions under that command. The

 validity of the unit characteristics returned by this command

 varies with the unit’s state. Class drivers can determine

 which characteristics are valid by examining the values

 returned in the "status" and "unit identifier" fields.

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Already Online")

 The "Already Online" sub-code bit flag is set if and only

 if the unit is already "Unit-Online" to the requesting

 class driver; the unit’s state and characteristics are

 not altered. When the unit is already "Unit-Online" to

 the requesting class driver, the controller merely

 returns the unit characteristics in the end message with

 this status bit flag set, without performing any other

 actions.

 Invalid Command (sub-code "Invalid Unit Flags")

 The unit is already "Unit-Online" and, for those unit

 flags that are both host settable and supported by the

Minimal Disk MSCP Subset Page 6-30

6.13 ONLINE Command

 controller, the class driver has specified different

 values from those currently in effect on the unit. The

 unit remains "Unit-Online"; the host settable unit flags

 are not changed. Controllers that do not provide

 Multi-host Support may, at their option, omit checking

 that the unit flags are the same. Such a controller must

 ignore the class driver specified unit flags for units

 that are already "Unit-Online", thus returning a

 "Success" status code with "Already Online" sub-code.

 Command Aborted

 The unit’s state is unchanged. The host must assume

 that the returned unit characteristics are invalid.

 Unit-Offline

 Note that some causes of a unit being "Unit-Offline" may

 be overridden (suppressed) by the "Allow Self

 Destruction" command modifier.

 Media Format Error

 The unit is and remains "Unit-Available". However,

 attention messages are suppressed for this unit and the

 controller attempts to spin-down this unit exactly as if

 an AVAILABLE command with the "Spin-down" modifier set

 were issued. Note, however, that this error will be

 suppressed and the unit brought "Unit-Online" anyway if

 the "Ignore Media Format Error" command modifier is set.

 See the modifier description above.

 Controller Error

 The host should assume the unit is "Unit-Offline".

 Drive Error

 The unit is "Unit-Offline" due to being inoperative. The

 controller must suppress AVAILABLE attention messages for

 the unit and attempt to spin-down the unit, exactly as if

 an AVAILABLE command with the "Spin-down" modifier set

 were issued for the unit. The controller may

 subsequently report the unit as being either

 "Unit-Offline" or "Unit-Available"; generally the

 reported unit state will depend upon exactly how the unit

 is "broken", and the interactions of the failure with the

 controller’s perception of the unit’s state.

Description:

Minimal Disk MSCP Subset Page 6-31

6.13 ONLINE Command

 The ONLINE command is used to bring a unit "Unit-Online", set

 host settable unit characteristics, and obtain those unit

 characteristics that are essential for proper class driver

 operation. The unit is spun-up, if necessary, and its heads

 are loaded prior to returning the ONLINE command’s end

 message. Host settable characteristics are set exactly as if

 a SET UNIT CHARACTERISTICS command were issued; see the

 description of that command. Host settable characteristics

 are set after the unit has been successfully spun-up and any

 other validity checks have succeeded. Note that the unit’s

 host settable characteristics are NOT altered if the unit is

 already "Unit-Online".

 The class driver must invoke a process that will access the

 unit’s Replacement and Caching Table to determine if a bad

 block replacement operation has been partially performed or

 if the unit must be write protected. The details of this

 check and its consequences are described in Section "Bad

 Block Replacement" and DEC Standard Disk Format.

 Note that the format of the ONLINE command’s end message is

 identical to the SET UNIT CHARACTERISTICS command’s end

 message.

Minimal Disk MSCP Subset Page 6-32

6.14 READ Command

6.14 READ Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- buffer ---+

 | |

 +--- descriptor ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

Allowable modifiers:

 Compare

 Express Request

 Suppress Error Correction

 Suppress Error Recovery

Minimal Disk MSCP Subset Page 6-33

6.14 READ Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Byte Count")

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Compare Error

 Data Error

 Host Buffer Access Error

 Controller Error

 Drive Error

Description:

 Data is read from the unit and transferred to the host

 buffer.

Minimal Disk MSCP Subset Page 6-34

6.15 REPLACE Command

6.15 REPLACE Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | replacement block number |

 +-------------------------------+

 | |

 +--- ---+

 | reserved |

 +--- ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

 replacement block number

 Identifies the replacement block that has been allocated

 to replace the bad logical block.

 logical block number

 Identifies the bad logical block that is being replaced.

Allowable modifiers:

 Express Request

 Primary Replacement Block

 Must be set if and only if the "replacement block number"

 specifies the primary replacement block for "logical

 block number". That is, must be set if and only if the

 following expression is true:

 replacement block number =

 logical block number / track size * RBNs

Minimal Disk MSCP Subset Page 6-35

6.15 REPLACE Command

 where "track size" and "RBNs" are unit characteristics

 obtained via the GET UNIT CHARACTERISTICS command and "/"

 denotes integer (truncating) division. See DEC Standard

 Disk Format for more information. Note that this

 modifier is redundant information provided for the

 convenience of the controller.

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Replacement Block Number")

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Write Protected

 Controller Error

 Drive Error

Description:

 The specified logical block is flagged to indicate that it

 has been replaced with the specified replacement block. The

 volume’s Replacement and Caching Table must have been updated

 prior to using this command, and the replacement block should

 be initialized with a write command to the same logical block

 number after using this command. See Section "Bad block

 Replacement" and DEC Standard Disk Format for more

 information on the use and function of this command.

Minimal Disk MSCP Subset Page 6-36

6.16 SET CONTROLLER CHARACTERISTICS Command

6.16 SET CONTROLLER CHARACTERISTICS Command

Command category:

 Immediate

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | reserved |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | cntrlr. flags | MSCP version |

 +---------------+---------------+

 | reserved | host timeout |

 +---------------+---------------+

 | quad-word |

 +--- ---+

 | time and date |

 +-------------------------------+

 MSCP version

 Host class drivers must supply the value zero in this

 field. MSCP servers must verify this value and, if it is

 not zero, return an Invalid Command end message. This

 value will be incremented if MSCP is ever modified in a

 way that is not upwards compatible.

 cntrlr. flags

 Host settable controller flags; see Section "Controller

 Flags" under "MSCP Control Message Formats"

 host timeout

 The time interval that the controller should use for the

 host access timeout with this host, or zero if the

 controller should disable the host access timeout for

 this host. Expressed as an unsigned binary integer in

 units of seconds. Controllers should use a default host

 access timeout of 60 seconds if they have not received a

 SET CONTROLLER CHARACTERISTICS command since becoming

 "Controller-Online".

Minimal Disk MSCP Subset Page 6-37

6.16 SET CONTROLLER CHARACTERISTICS Command

 Even though this is a sixteen bit field, controllers may

 treat all values greater than 255 as if 255 had been

 specified, and all values between 1 and 9 as if 10 had

 been specified. See Section "Host Access Timeouts" for a

 description of host access timeouts.

 quad-word time and date

 The current time and date, expressed as the number of

 clunks since 00:00 o’clock, November 17, 1858 (in the

 local time zone), or zero if the current time and date is

 not available. A clunk is 100 nanoseconds. This is the

 standard VAX/VMS time and date format. The use that is

 made of the current time and date and the action taken if

 it is not supplied (i.e., if zero is supplied) is

 controller dependent, and should be described in each

 controller’s Functional Specification. Controllers must

 not require that a time and date be supplied for proper

 operation.

Allowable modifiers:

 none

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | reserved |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | cntrlr. flags | MSCP version |

 +---------------+---------------+

 | reserved |cntrlr. timeout|

 +---------------+---------------+

 | |

 +--- controller identifier ---+

 | |

 +-------------------------------+

 cntrlr. flags

 See Section "Controller Flags" under "MSCP Control

 Message Formats"

 cntrlr. timeout

 The controller timeout interval; the minimum amount of

 time that the controller needs to guarantee it will

Minimal Disk MSCP Subset Page 6-38

6.16 SET CONTROLLER CHARACTERISTICS Command

 accomplish useful work on its oldest outstanding command.

 Expressed as an unsigned binary integer in units of

 seconds. This value must not exceed 255 (one byte), even

 though a sixteen bit field has been provided. See

 Section "Command Timeouts".

 controller identifier

 Uniquely identifies the controller among all devices

 accessible via MSCP. See Section "Controller and Unit

 Identifiers".

Status Codes:

 Success (sub-code "Normal")

Description:

 The SET CONTROLLER CHARACTERISTICS command is used to set and

 obtain controller characteristics. The default value for

 "cntrlr. flags" is all flags clear (i.e., all messages

 disabled); the default value for "host timeout" is 60

 seconds. These default values are used from the time that

 the controller becomes "Controller-Online" to a host until it

 stops being "Controller-Online" or until the host issues a

 SET CONTROLLER CHARACTERISTICS command.

Minimal Disk MSCP Subset Page 6-39

6.17 SET UNIT CHARACTERISTICS Command

6.17 SET UNIT CHARACTERISTICS Command

Command category:

 Sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | unit flags | reserved |

 +---------------+---------------+

 | reserved |

 +-------------------------------+

 | |

 +--- reserved ---+

 | |

 +-------------------------------+

 | device dependent parameters |

 +---------------+---------------+

 | reserved | reserved |

 +---------------+---------------+

 unit flags

 Host settable unit flags; see Section "Unit Flags" under

 "MSCP Control Message Formats"

 device dependent parameters

 Device and/or controller dependent device tuning

 parameters. The value zero in this field means that

 default or normal tuning parameters should be used.

 Non-zero values for this field should normally be

 established through the system startup command file.

 Examples of the use of this field include selecting

 alternative optimization algorithms or enabling and

 disabling automatic (online) diagnosis of the unit.

Allowable modifiers:

 Enable Set Write Protect

Minimal Disk MSCP Subset Page 6-40

6.17 SET UNIT CHARACTERISTICS Command

 Causes the "Write Protect" unit flag to be host settable.

 This modifier causes the state of the "Write Protect

 (software) " unit flag to be copied to the Software Write

 Protect flag for this unit; see Section "Write

 Protection".

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | unit flags |multi-unit code|

 +---------------+---------------+

 | reserved |

 +-------------------------------+

 | |

 +--- unit identifier ---+

 | |

 +-------------------------------+

 | media type identifier |

 +---------------+---------------+

 | reserved | shadow unit |

 +---------------+---------------+

 | unit size |

 +-------------------------------+

 | volume serial number |

 +-------------------------------+

 The validity of the unit characteristics returned by this

 command and the ONLINE command varies with the unit’s state.

 Class drivers can determine which characteristics are valid

 by examining the values returned in the "status" and "unit

 identifier" fields. See the description below.

 multi-unit code

 The low byte of this field identifies the access path

 between the controller and the unit. The high byte of

 this field identifies the spindle, within the access

 path, to which the unit belongs. See Section "Multi-Unit

 Drives and Formatters", for more information.

 unit flags

 See Section "Unit Flags" under "MSCP Control Message

 Formats"

 unit identifier

Minimal Disk MSCP Subset Page 6-41

6.17 SET UNIT CHARACTERISTICS Command

 Uniquely identifies the unit among all devices accessible

 via MSCP; see Section "Controller and Unit Identifiers".

 media type identifier

 Identifies the type of media used by this unit, for use

 by host generic device allocation mechanisms; see

 Section "Media Type Identifiers".

 shadow unit

 Always identical to the "unit number" field.

 unit size

 The number of logical blocks in the host area of this

 unit. This value does NOT include the logical block

 range occupied by the unit’s Replacement and Caching

 Table. The logical block number of the first block of

 the unit’s Replacement and Caching Table is equal to this

 value.

 volume serial number

 The low order 32 bits of the serial number of the volume

 that is mounted on this unit. Zero if the volume does

 not have a serial number. When displayed in human

 readable form, this number should be formatted as a ten

 digit decimal number with leading zeros printed.

 Undefined if the unit is "Unit-Offline" or

 "Unit-Available", or if the "Ignore Media Format Error"

 modifier was set in the ONLINE command that brought this

 unit "Unit-Online".

 Hosts must not assume that the value returned in this

 field uniquely identifies the volume. Although this

 value often will be unique, the uniqueness is not

 guaranteed, especially across media obtained from several

 independent suppliers. Also, media that must meet

 external (industry compatible) format standards will

 typically be unable to implement a volume serial number;

 this field will always be zero for such media.

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Imply that the unit is "Unit-Online".

 Command Aborted

 The unit’s state is unchanged. The host must assume

Minimal Disk MSCP Subset Page 6-42

6.17 SET UNIT CHARACTERISTICS Command

 that the returned unit characteristics are invalid.

 Unit-Offline

 Unit-Available

 Controller Error

 Drive Error

 For both of these status codes the class driver should

 assume that the unit is "Unit-Offline".

Description:

 The SET UNIT CHARACTERISTICS command is used to set host

 settable unit characteristics and obtain those unit

 characteristics that are essential for proper class driver

 operation. This command never alters the unit’s state

 ("Unit-Online", "Unit-Available", "Unit-Offline"). It is

 meaningless to set host settable characteristics for a unit

 that is "Unit-Available" or "Unit-Offline".

 The ONLINE command performs a SET UNIT CHARACTERISTICS

 operation after bringing a unit "Unit-Online".

 Class drivers can determine which of the returned unit

 characteristics are valid by examining the returned "status"

 and "unit identifier" fields. The following cases exist:

 1. "status" is "Success", implying that the unit is

 "Unit-Online". All characteristics are valid. Note that

 the value of "volume serial number" is undefined if the

 unit was brought online by an ONLINE command with the

 "Ignore Media Format Error" modifier.

 2. "status" is "Unit-Available" or "Unit-Offline" and "unit

 identifier" is not zero. All unit flags except for the

 "Removable media" flag are undefined and the "volume

 serial number" is undefined. All other characteristics

 are valid.

 3. "unit identifier" is zero. Only the "shadow unit"

 characteristic is valid. All other characteristics are

 undefined.

 The three cases listed above are the only cases that can

 occur.

 Rather than testing the entire quadword unit identifier, it

 is sufficient to merely test the high order word of the unit

 identifier, containing the class and model code bytes, to see

 if it is zero or not.

Minimal Disk MSCP Subset Page 6-43

6.17 SET UNIT CHARACTERISTICS Command

 Controllers must supply valid values for all characteristics

 whenever the unit is "Unit-Online". Controllers must supply

 a non-zero unit identifier and valid values for all

 characteristics except those noted above whenever the unit is

 "Unit-Available" or the unit is "Unit-Offline" solely due to

 being disabled or known. Controllers may or may not, at the

 controller’s option, provide valid characteristics when the

 unit is "Unit-Offline" for any other reason.

 The rules in the above paragraphs can be restated as follows:

 1. If "status" is "Success", then "unit identifier" must be

 non-zero and all characteristics must be valid.

 2. If "status" is "Unit-Available", then "unit identifier"

 must be non-zero and almost all characteristics must be

 valid.

 3. If "status" is "Unit-Offline" and the sole causes of the

 unit being offline are it being disabled or known, then

 "unit identifier" must be non-zero and almost all

 characteristics must be valid.

 4. If "unit identifier" is zero, then "status" must either

 be "Unit-Offline" with some reason other than the the

 unit being disabled or known indicated, or "status" must

 be "Controller Error" or "Drive Error". Virtually no

 characteristics need be valid.

 Note that the format of the SET UNIT CHARACTERISTICS

 command’s end message is identical to that of the ONLINE

 command’s end message.

Minimal Disk MSCP Subset Page 6-44

6.18 WRITE Command

6.18 WRITE Command

Command category:

 Non-sequential

Command message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | modifiers | rsvd | opcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- buffer ---+

 | |

 +--- descriptor ---+

 | |

 +-------------------------------+

 | logical block number |

 +-------------------------------+

Allowable modifiers:

 Compare

 Express Request

 Force Error

 Suppress Error Correction

 Note that this modifier only affects the compare pass of

 a write compare operation; it has no affect on the write

 operation itself.

 Suppress Error Recovery

Minimal Disk MSCP Subset Page 6-45

6.18 WRITE Command

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

 | byte count |

 +-------------------------------+

 | |

 +--- ---+

 | undefined |

 +--- ---+

 | |

 +-------------------------------+

 | first bad block |

 +-------------------------------+

Status Codes:

 Success (sub-code "Normal")

 Success (sub-code "Duplicate Unit Number")

 Invalid Command (sub-code "Invalid Byte Count)

 Invalid Command (sub-code "Invalid Logical Block Number")

 Command Aborted

 Unit-Offline

 Unit-Available

 Write Protected

 Compare Error

 Data Error

 Host Buffer Access Error

 Controller Error

 Drive Error

Description:

 Data is fetched from the host data buffer and written to the

 unit.

Minimal Disk MSCP Subset Page 6-46

6.19 Invalid Command End Message

6.19 Invalid Command End Message

The controller returns an Invalid Command end message for

commands that violate the MSCP protocol.

End message format:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | status | flags |endcode|

 +---------------+-------+-------+

Status Codes:

 Invalid Command (sub-code "Invalid Message Length")

 Invalid Command (sub-code "Invalid MSCP Version")

 Invalid Command (sub-code "Invalid Opcode")

 Invalid Command (sub-code "Invalid Modifier")

 Invalid Command (sub-code "Invalid Unit Flags")

 Invalid Command (sub-code "Invalid Controller Flags")

 Invalid Command (sub-codes used for reserved fields)

Description:

 The controller returns this end message for any command that

 violates the MSCP protocol. Protocol violations include

 illegal opcodes, messages that are too short to include the

 parameters required by the opcode, reserved bits set in flag

 fields, and non-zero values in reserved fields.

 The "command reference number" and "unit number" fields are

 copied from the illegal command message; their contents are

 undefined if the message was too short to contain these

 parameters. The "endcode" field is NOT copied from command

 message (since the command message does not describe a valid

 command). Instead, the "endcode" field always contains the

 constant (OP.END) defined in Table A-1.

 The controller may or may not, at its option, enter the

 "Controller-Available" state relative to the issuing host

 class driver after it returns this end message.

Minimal Disk MSCP Subset Page 6-47

6.20 ACCESS PATH Attention Message

6.20 ACCESS PATH Attention Message

Attention message format:

 31 0

 +-------------------------------+

 | reserved |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | reserved | rsvd |atncode|

 +---------------+-------+-------+

 unit number

 Identifies the unit for which an alternate access path is

 being reported.

Description:

 MSCP servers use this attention message to report alternate

 access paths to multi-access units. This message reports

 that the specified unit is potentially accessible via the

 sending MSCP server -- i.e., it would be "Unit-Available" if

 it and all units that share its access path ceased being

 "Unit-Online" via another controller. The specific event

 that causes an MSCP server to send this attention message is

 the receipt, by the controller to which the unit is

 "Unit-online", of a DETERMINE ACCESS PATHS command. This

 attention message is sent to all class drivers that are

 "Controller-Online" to the MSCP server and have enabled

 attention messages. See Section "Multi-Access Drives" for

 more information.

Minimal Disk MSCP Subset Page 6-48

6.21 AVAILABLE Attention Message

6.21 AVAILABLE Attention Message

Attention message format:

 31 0

 +-------------------------------+

 | reserved |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | reserved | rsvd |atncode|

 +---------------+-------+-------+

 | unit flags |multi-unit code|

 +---------------+---------------+

 | undefined |

 +-------------------------------+

 | |

 +--- unit identifier ---+

 | |

 +-------------------------------+

 | media type identifier |

 +-------------------------------+

 | |

 / 0 to 16 bytes /

 / of undefined data /

 | |

 +-------------------------------+

 unit number

 Identifies the unit that just became "Unit-Available".

 multi-unit code

 unit flags

 unit identifier

 media type identifier

 Identical to the corresponding fields in the GET UNIT

 STATUS or SET UNIT CHARACTERISTICS command end messages.

 These fields must be valid as defined for the unit being

 "Unit-Available", regardless of the actual state of the

 unit when the message is sent. That is, the "multi-unit

 code", "unit identifier", and "media type identifier"

 must all be valid and the "Removable media" unit flag

 must be valid.

Description:

Minimal Disk MSCP Subset Page 6-49

6.21 AVAILABLE Attention Message

 An MSCP server sends an AVAILABLE attention message to a

 "Controller-Online" class driver when a unit asynchronously

 becomes "Unit-Available" to that class driver, unless

 AVAILABLE attention messages have been suppressed for that

 unit by an AVAILABLE command with the "Spin-down" modifier or

 by an error with similar side effects. Changes to the

 "Unit-Available" state due to the class driver itself issuing

 an AVAILABLE command are synchronous; all other changes to

 "Unit-Available" are asynchronous. See Section "Unit

 States".

 The actual sending of an AVAILABLE attention message may be

 delayed for an arbitrarily long time, due to communications

 mechanism flow control, from the time that the unit actually

 becomes "Unit-Available". The message must not be sent if

 the class driver ceases to be "Controller-Online" during this

 delay. The message must be sent anyway if the unit, or any

 unit with which it shares an access path, becomes

 "Unit-Online" via another controller during this delay. The

 message may or may not be sent, at the controller’s option,

 if the unit ceases to be "Unit-Available" for any other

 reason during this delay.

 Note that, due to these delays, it is possible for an

 AVAILABLE attention message to be received after the class

 driver has already brought the unit "Unit-Online". Therefore

 class drivers must not use AVAILABLE attention messages to

 flag "Unit-Online" units as having become "Unit-Available".

 The proper procedure is to issue a command, such as a GET

 UNIT STATUS, to a "Unit-Online" unit for which an AVAILABLE

 attention message has been received, and only flag the unit

 as having become "Unit-Available" if the command returns that

 status code.

 AVAILABLE attention messages are not sent for units that are

 already "Unit-Available" when a class driver enables

 attention messages. Class drivers that need to be aware of

 all "Unit-Available" units must enable attention messages,

 then scan all units via the GET UNIT STATUS command with the

 "Next Unit" modifier set to locate all units that are already

 "Unit-Available". All units that subsequently become

 "Unit-Available" will be reported with an AVAILABLE attention

 message.

 An MSCP server may send redundant or erroneous AVAILABLE

 attention messages at any time. The frequency of such

 messages must be low enough that they do not represent a

 significant overhead for either hosts or the communications

 mechanism. The information contained in such messages (unit

 number, unit identifier, media type identifier, etc.) must

 correspond to an actual, physical unit that is potentially

 accessible via that MSCP server (i.e., connected to the

 controller), although the unit need not be "Unit-Available".

 Note that hosts must be able to handle seemingly erroneous

Minimal Disk MSCP Subset Page 6-50

6.21 AVAILABLE Attention Message

 AVAILABLE attention messages in any case, since the unit’s

 state may change before the host can act on an otherwise

 correct message.

Minimal Disk MSCP Subset Page 6-51

6.22 DUPLICATE UNIT NUMBER Attention Message

6.22 DUPLICATE UNIT NUMBER Attention Message

Attention message format:

 31 0

 +-------------------------------+

 | reserved |

 +---------------+---------------+

 | reserved | unit number |

 +---------------+-------+-------+

 | reserved | rsvd |atncode|

 +---------------+-------+-------+

 unit number

 Identifies the unit number that is duplicated on two or

 more units.

Description:

 An MSCP server sends DUPLICATE UNIT NUMBER attention messages

 to notify hosts that two or more units of the same device

 class have the same unit number. This allows the hosts to

 complain to an operator, who can correct the condition. The

 DUPLICATE UNIT NUMBER attention messages are sent to all

 hosts that are "Controller-Online" and have enabled attention

 messages. See Section "Unit Numbers" for a detailed

 discussion of the handling of duplicate unit numbers. Note

 that a DUPLICATE UNIT NUMBER attention message is sent

 regardless of whether or not one of the units is

 "Unit-Online".

 The actual sending of a DUPLICATE UNIT NUMBER attention

 message may be delayed for an arbitrarily long time, due to

 communications mechanism flow control, from the time that the

 controller first detects the duplicate unit number. The

 message must not be sent if the class driver ceases to be

 "Controller-Online" during this delay. The message may or

 may not be sent, at the controller’s option, if the duplicate

 unit number condition disappears during this delay.

 DUPLICATE UNIT NUMBER attention messages are not sent for

 duplicate unit number conditions that already exist when a

 class driver enables attention messages. Class drivers that

 need to be aware of all duplicate unit number conditions must

 enable attention messages, then scan all units via the GET

 UNIT STATUS command with the "Next Unit" modifier set to

 locate all duplicate unit numbers. All duplicate unit

 numbers that the controller subsequently detects will be

 reported with a DUPLICATE UNIT NUMBER attention message.

Minimal Disk MSCP Subset Page 6-52

6.22 DUPLICATE UNIT NUMBER Attention Message

 An MSCP server may send redundant DUPLICATE UNIT NUMBER

 attention messages. The frequency of such messages must be

 low enough that they do not represent a significant overhead

 for either hosts or the communications mechanism.

 Furthermore, the duplicate unit number condition being

 reported must actually exist at the time the MSCP server

 decides to generate the DUPLICATE UNIT NUMBER attention

 message. Note, however, that the duplicate unit number

 condition may have disappeared by the time the host receives

 or acts upon the message.

 CHAPTER 7

 DISK MSCP OPTIONS

/ no options defined yet /

 CHAPTER 8

 MSCP ERROR LOG MESSAGE FORMATS

8.1 Introduction

MSCP controllers report errors and unusual occurrences in two

ways: end messages and error log messages. Unrecoverable errors

are reported in the end message of the command that encountered

the error. Such errors should be reported back to the program

that initiated the command, so that it can take appropriate

action. Additionally, all "significant" errors are reported in

error log messages, so that they can be recorded in the host’s

error log for eventual use by Field Service. The definition of

what constitutes a "significant" error is controller and/or

device specific; in general, anything that would be of interest

to Field Service is a "significant" error. The errors reported

by error log messages may be either recoverable or unrecoverable.

Note that hosts should not record errors reported in end messages

in the error log; if the error is "significant", a separate

error log message will be generated.

When a host receives an error log message, the host port driver

passes the class driver the error log message text and the length

of the error log message. In addition, the device class (e.g.,

disk) of the error log message is implicit in the connection on

which the message was received. Note that the order of receipt

of error log messages relative to end or attention messages is

expressly undefined. Therefore an error log message may be

received either before or after an end message that reports the

same error or that has the "Error Log Generated" flag set.

MSCP servers assign a sequence number to every error log message

they generate. This sequence number serves two purposes. First,

if the same error log message is sent to multiple hosts, which

then record it in a common error log file, it allows the multiple

copies of the same message to be recognized as describing the

same error. Second, if a host requests that it receive every

error log message that an MSCP server generates, it allows that

host to detect missing or lost error log messages by detecting

gaps in the sequence numbers. This second purpose requires that

the host set all three error log enable flags in the "controller

flags" field of the SET CONTROLLER CHARACTERISTICS command.

MSCP Error Log Message Formats Page 8-2

8.1 Introduction

Some controllers can achieve these purposes via other means, and

therefore need not implement error log sequence numbers; this is

further described in the third paragraph below.

Each MSCP server implements a single error log sequence number,

which it uses for all error log messages for all class drivers.

The server must increment its sequence number each time it

attempts to generate an error log message. Multiple copies of

the same error log message must all have the same sequence

number. The sequence number is reset whenever the MSCP server

loses context. The first error log message after such a loss of

context has sequence number zero. The sequence number must not

be reset as a normal result of the MSCP server becoming

"Controller-Online" or "Controller-Available" to -a class driver.

Note that each MSCP server (i.e., each device class) within a

controller has its own error log sequence number.

As stated above, the error log sequence number is only reset when

the MSCP server loses context. The MSCP server reports the fact

that it has lost context with a flag in the first error log

message it sends to each class driver after said loss of context.

This means, in effect, that the MSCP server must keep track of

all class drivers to which it has sent an error log message since

its last loss of context, regardless of whether or not it is

currently "Controller-Online" to those class drivers.

MSCP servers that meet all of the following requirements need not

implement error log sequence numbers, since their purposes are

achieved via other means. The requirements are:

 1. The MSCP server must never drop error log messages.

 That is, whenever it has an error log message to

 generate, it must block or deadlock until it is able to

 generate the message.

 2. The communications mechanism between the MSCP server and

 the class driver must guarantee all error log messages

 will be delivered without loss or duplication in the

 order that they were generated. That is, the

 communications mechanism must provide the same

 guarantees for datagrams (error log messages) that it

 provides for sequential messages (control messages).

 3. The MSCP server and communications mechanism must be

 inherently incapable of communicating with more than one

 class driver.

MSCP servers that meet the above three requirements may generate

all error log messages with a sequence number of zero and with

the "Sequence Number Reset" flag set, rather than actually

implementing sequence numbers. All other MSCP servers must

implement an actual error log sequence number. Such other MSCP

servers may not lose context solely to reset the error log

sequence number. All losses of context must be caused by some

MSCP Error Log Message Formats Page 8-3

8.1 Introduction

external event such as a power failure.

Since error log messages are not subject to flow control, it is

possible for a controller to generate error log messages faster

than a host can record them in its error log. In order to

minimize the probability of this happening, and thus minimize the

probability of losing error log information, controllers must

generate no more than three error log messages in response to a

single error. Note that the definition of what constitutes an

error is necessarily controller and/or drive dependent. The

three message limit encompasses an original error and all error

recovery / correction / retry sequences associated with that

error. Seemingly unrelated errors that occur in a recovery

sequence are generally considered to be different errors, and are

therefore not covered by the three message limit.

For example, consider an uncorrectable ECC error on a read.

Re-reads using offset head positioning and the like are part of

the retry sequence, and thus fall under the three message limit

for the original error. However, failure of the command

directing the drive to use offset head positioning (i.e., the

command itself fails, indicating that the heads could not be

offset) would be considered a separate error, even though both it

and the original read error might have a common cause (such as a

bad cable between the controller and the drive).

In order to achieve this three message limit, most error log

messages summarize the results of an entire retry sequence. This

approach generally results in exactly one error log message per

error. The other approach is to generate a separate error log

message for each attempt or retry that fails. This approach can

only be used with errors for which the number of retries is small

(i.e., three or fewer attempts total), as otherwise the three

message limit will be exceeded.

MSCP Error Log Message Formats Page 8-4

8.2 Generic Error Log Message Format

8.2 Generic Error Log Message Format

All MSCP error log messages must be 384 bytes or shorter in

length. The actual maximum error log message size is a

controller characteristic and should be described in the

controller’s functional specification. All host software,

however, should be prepared to handle error log messages up to

and including the 384 byte maximum size. The general format of

error log messages is as follows:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 |sequence number| unit number |

 +---------------+-------+-------+

 | event code | flags | format|

 +---------------+-------+-------+

 | |

 +--- controller identifier ---+

 | |

 +---------------+-------+-------+

 |multi-unit code|chvrsn | csvrsn|

 +---------------+-------+-------+

 | |

 +--- unit identifier ---+

 | |

 +---------------+-------+-------+

 | fmt dependent |uhvrsn | usvrsn|

 +---------------+-------+-------+

 | volume serial number |

 +-------------------------------+

 | |

 / format dependent /

 / information /

 | |

 +-------------------------------+

The fields in the generic error log message are as follows:

command reference number

 The command reference number of the MSCP command that caused

 the error reported by this error log message, or zero if the

 error does not correspond to a specific outstanding command.

 If this field contains a command reference number, then the

 command’s end message will also have the "error log

 generated" end message flag set. Note that the error log

 message may be received either before or shortly after the

 command’s end message.

MSCP Error Log Message Formats Page 8-5

8.2 Generic Error Log Message Format

unit number

 The unit number of the unit to which the error log message

 relates, or zero if the message does not relate to a specific

 unit. This field may contain the unit number of any unit of

 the drive or formatter if the error relates to an entire

 multi-unit drive or formatter. The validity of this field is

 determined by the value in the "format" field.

sequence number

 The sequence number of this error log message since the last

 time the MSCP server lost context, or zero if the MSCP server

 does not implement error log sequence numbers. Note that

 error log sequence numbers are common to all class drivers,

 and are not reset by class driver re-synchronization. Note

 also that the class driver may receive error log messages out

 of sequence.

format

 The value in this field identifies the detailed format of the

 error log message, as defined in the following sections.

flags

 Bit flags, collectively called error log message flags, used

 to report various attributes of the error. The following

 flags are defined:

 Operation Successful

 If set, the operation causing this error log message has

 been successfully completed. The error log message

 summarizes the retry sequence that was necessary to

 successfully complete the operation. If clear, the

 operation has not yet been successfully completed.

 Operation Continuing

 If set, the retry sequence for this operation will be

 continued. This error log message reports the

 unsuccessful completion of one or more retries. If

 clear, the retry sequence for this operation has

 terminated. Provided "Operation Successful" is also

 clear, the retry limit for this operation has been

 reached and an unrecoverable error will be reported.

 Undefined (meaningless) if "Operation Successful" is set.

 Sequence Number Reset

 If set, then the error log sequence number ("sequence

 number" field) has been reset by the MSCP server since

 the last error log message sent to the receiving class

MSCP Error Log Message Formats Page 8-6

8.2 Generic Error Log Message Format

 driver. If clear, the sequence number has not been

 reset, implying that the "sequence number" field may be

 used to detect missing error log messages. Always set if

 the MSCP server does not implement error log sequence

 numbers.

 If "Operation Successful" and "Operation Continuing" are both

 clear, then the error log message reports a hard

 (unrecoverable) error. If "Operation Successful" is clear

 and "Operation Continuing" is set, then the error log message

 reports an intermediate step within an error recovery

 operation; it is not yet certain whether the error is hard

 or soft. If "Operation Successful" is set, then the error

 log message summarizes the retry sequence used to recover

 from a soft error.

event code

 Identifies the specific error or event being reported by this

 error log message. The structure of event codes is identical

 to the structure of the status codes returned in end

 messages. That is, they consist of a 5 bit major event code

 and an 11 bit sub-code. All errors that may be reported with

 both error log messages and end messages must have identical

 status and event codes. Also, the same value may not be used

 as both a status and event code unless it reports the same

 error as each code.

 The sub-code portion of event codes is potentially controller

 and/or device specific. However, the same major code /

 sub-code combination, whenever it is used, must always have

 the same meaning. Therefore new sub-codes may be defined as

 new devices are introduced, but the meaning of old sub-codes

 should not change. Event code values are listed in Appendix

 B.

controller identifier

 Uniquely identifies the controller among all devices

 accessible via MSCP. See Section "Controller and Unit

 Identifiers".

csvrsn

 The controller’s software, firmware, or microcode revision

 number.

chvrsn

 The controller’s hardware revision number.

multi-unit code

 The multi-unit code, as defined in Section "Multi-Unit Drives

MSCP Error Log Message Formats Page 8-7

8.2 Generic Error Log Message Format

 and Formatters" of the unit to which the error log message

 relates. This field may contain the multi-unit code of any

 unit of the drive or formatter if the error relates to an

 entire multi-unit drive or formatter.

unit identifier

 Uniquely identifies the unit among all devices accessible via

 MSCP. See Section "Controller and Unit Identifiers". This

 field is only present for errors that relate to a specific

 unit.

usvrsn

 The unit’s software, firmware, or microcode revision number.

 This field is only present for errors that relate to a

 specific unit.

uhvrsn

 The unit’s hardware revision number. This field is only

 present for errors that relate to a specific unit.

volume serial number

 The low order 32 bits of the serial number of the volume that

 is mounted on the unit. Zero if the unit’s format does not

 provide for a volume serial number. Undefined (garbage) if

 there is no volume mounted in the unit, the area of the

 volume that contains the serial number cannot be read

 successfully, the error occurred before the volume serial

 number could be determined while bringing the unit

 "Unit-Online", the unit is not "Unit-Online" to any host, or

 if the "Ignore Media Format Error" modifier was specified in

 the ONLINE command that brought the unit "Unit-Online". This

 field is only present for errors that relate to a specific

 disk unit.

fmt dependent

format dependent information

 The format of the remainder of the error log message depends

 upon the value of the "format" field. Note that the fields

 "unit number" and "multi-unit code" through "volume serial

 number" also depend on the value of the "format" field, as

 they are only present for those formats used to report errors

 that relate to a specific unit.

The following sections describe the specific error log message

formats.

MSCP Error Log Message Formats Page 8-8

8.3 Controller Errors

8.3 Controller Errors

The following error log message format is used to report

controller errors:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 |sequence number| reserved |

 +---------------+-------+-------+

 | event code | flags | format|

 +---------------+-------+-------+

 | |

 +--- controller identifier ---+

 | |

 +---------------+-------+-------+

 | |chvrsn | csvrsn|

 | +-------+-------+

 | controller |

 / dependent /

 / information /

 | |

 +-------------------------------+

controller dependent information

 A variable (controller dependent) amount of information;

 often no controller dependent information is provided. The

 length of this information is implied by the total length of

 the error log message, passed to the class driver by the port

 driver. This information will typically not be interpreted

 by error log formatting programs, instead being printed as a

 series of octal values.

MSCP Error Log Message Formats Page 8-9

8.4 Host Memory Access Errors with Bus Address

8.4 Host Memory Access Errors with Bus Address

The following error log message format is used to report host

memory access errors when the host memory bus address is

available to the controller:

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 |sequence number| reserved |

 +---------------+-------+-------+

 | event code | flags | format|

 +---------------+-------+-------+

 | |

 +--- controller identifier ---+

 | |

 +---------------+-------+-------+

 | reserved |chvrsn | csvrsn|

 +---------------+-------+-------+

 | host memory address |

 +-------------------------------+

host memory address

 The address on the host memory bus at which the host memory

 access error occurred, expressed as a 32 bit quantity. The

 resolution to which a controller identifies the address at

 which the error occurred is controller dependent, and must be

 described in the controller’s Functional Specification. Disk

 controllers will typically provide a resolution of one disk

 block (either 512 or 576 bytes).

MSCP Error Log Message Formats Page 8-10

8.5 Disk Transfer Errors

8.5 Disk Transfer Errors

The following error log message format is used to report errors

that occur during a disk transfer. Note that this format is

generally used to report the results of a sequence of retries.

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 |sequence number| unit number |

 +---------------+-------+-------+

 | event code | flags | format|

 +---------------+-------+-------+

 | |

 +--- controller identifier ---+

 | |

 +---------------+-------+-------+

 |multi-unit code|chvrsn | csvrsn|

 +---------------+-------+-------+

 | |

 +--- unit identifier ---+

 | |

 +-------+-------+-------+-------+

 | retry | level |uhvrsn | usvrsn|

 +-------+-------+-------+-------+

 | volume serial number |

 +-------------------------------+

 | header code |

 +-------------------------------+

 | |

 / controller or disk /

 / dependent information /

 | |

 +-------------------------------+

level

 The error recovery level used for the most recent attempt at

 the transfer. The error recovery level is a device dependent

 encoding of the special error recovery procedures, such as

 offset head positioning, used for the most recent transfer

 attempt. The values zero and 255 (all ones) are reserved to

 indicate that no special error recovery procedures were used.

retry

 The retry count, within the current error recovery level, of

 the most recent attempt at the transfer. This value starts

 at one for the first attempt using a particular error

 recovery level and increments for each subsequent attempt at

 the same level. This continues up to some drive dependent

 maximum, at which time the retry count is reset to one and

 the next error recovery level (if any) is tried.

MSCP Error Log Message Formats Page 8-11

8.5 Disk Transfer Errors

header code

 Identifies the physical disk location at which the error

 occurred. If the high four bits are 0000 (binary), then the

 low 28 bits are the logical block number at which the error

 occurred. If the high four bits are 0110 (binary), then the

 low 28 bits are the replacement block number at which the

 error occurred. All other patterns of the high four bits of

 "header code" are reserved, and must not be returned without

 an ECO to this specification to define their interpretation.

 The 28 bit logical or replacement block number may be

 decomposed, using the disk geometry parameters returned by

 the GET UNIT STATUS command, to obtain the cylinder, group,

 track, and sector position at which the error occurred.

controller or disk dependent information

 A variable (controller or disk dependent) amount of

 information; often no controller or disk dependent

 information is provided. The length of this information is

 implied by the total length of the error log message, passed

 to the class driver by the port driver. This information

 will typically not be interpreted by error log formatting

 programs, instead being printed as a series of octal values.

MSCP Error Log Message Formats Page 8-12

8.6 SDI Errors

8.6 SDI Errors

The following error log message format is used by SDI disk

controllers to report drive detected errors and SDI communication

errors. Note that the controller retries these errors only once

or twice, so a separate error log message will be generated for

each attempt that fails.

 31 0

 +-------------------------------+

 | command reference number |

 +---------------+---------------+

 |sequence number| unit number |

 +---------------+-------+-------+

 | event code | flags | format|

 +---------------+-------+-------+

 | |

 +--- controller identifier ---+

 | |

 +---------------+-------+-------+

 |multi-unit code|chvrsn | csvrsn|

 +---------------+-------+-------+

 | |

 +--- unit identifier ---+

 | |

 +---------------+-------+-------+

 | reserved |uhvrsn | usvrsn|

 +---------------+-------+-------+

 | volume serial number |

 +-------------------------------+

 | header code |

 +-------------------------------+

 | |

 +--- SDI status ---+

 | information |

 +--- (12 bytes) ---+

 | |

 +-------------------------------+

header code

 Identifies the physical disk location at which the error

 occurred. If the high four bits are 0000 (binary), then the

 low 28 bits are the logical block number at which the error

 occurred. If the high four bits are 0110 (binary), then the

 low 28 bits are the replacement block number at which the

 error occurred. All other patterns of the high four bits of

 "header code" are reserved, and must not be returned without

 an ECO to this specification to define their interpretation.

 The 28 bit logical or replacement block number may be

 decomposed, using the disk geometry parameters returned by

 the GET UNIT STATUS command, to obtain the cylinder, group,

 track, and sector position at which the error occurred.

MSCP Error Log Message Formats Page 8-13

8.6 SDI Errors

SDI status information

 Twelve bytes of status information returned by the SDI GET

 STATUS command or by the SDI UNSUCCESSFUL response. The unit

 number information returned by the SDI command or response is

 not included, as that information is provided elsewhere in

 the error log message. Otherwise, all of the SDI status

 information is included. See the SDI specification for the

 format of this information.

 APPENDIX A

 OPCODE, FLAG, AND OFFSET DEFINITIONS

Notes: 1. The "x" in a 32 bit mnemonic for a bit flag will be either a "V" or an "M",

 respectively, depending on whether the symbol is defined as a bit number

 (offset) or as a mask.

 2. All offset values and field sizes are expressed in bytes.

 Table A-1 Control Message Opcodes

+--------------------+--------------------------+---+

| Opcode Value | Preferred Mnemonics | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Control Message Type |

+------+------+------+--------+-----------------+---+

| 1 | 01 | 01 | OP.ABO | MSCP$K_OP_ABORT | ABORT Command |

| 16 | 20 | 10 | OP.ACC | MSCP$K_OP_ACCES | ACCESS Command |

| 8 | 10 | 08 | OP.AVL | MSCP$K_OP_AVAIL | AVAILABLE Command |

| 32 | 40 | 20 | OP.CMP | MSCP$K_OP_COMP | COMPARE HOST DATA Command |

| 11 | 13 | 0B | OP.DAP | MSCP$K_OP_DTACP | DETERMINE ACCESS PATHS Command |

| 18 | 22 | 12 | OP.ERS | MSCP$K_OP_ERASE | ERASE Command |

| 2 | 02 | 02 | OP.GCS | MSCP$K_OP_GTCMD | GET COMMAND STATUS Command |

| 3 | 03 | 03 | OP.GUS | MSCP$K_OP_GTUNT | GET UNIT STATUS Command |

| 9 | 11 | 09 | OP.ONL | MSCP$K_OP_ONLIN | ONLINE Command |

+----- +------+------+--------+-----------------+---+

Opcode, Flag, and Offset Definitions Page A-2

 Table A-1 Control Message Opcodes (cont.)

+--------------------+--------------------------+---+

| Opcode Value | Preferred Mnemonics | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Control Message Type |

+------+------+------+--------+-----------------+---+

| 33 | 41 | 21 | OP.RD | MSCP$K_OP_READ | READ Command |

| 20 | 24 | 14 | OP.RPL | MSCP$K_OP_REPLC | REPLACE Command |

| 4 | 04 | 04 | OP.SCC | MSCP$K_OP_STCON | SET CONTROLLER CHARACTERISTICS Command |

| 10 | 12 | 0A | OP.SUC | MSCP$K_OP_STUNT | SET UNIT CHARACTERISTICS Command |

| 34 | 42 | 22 | OP.WR | MSCP$K_OP_WRITE | WRITE Command |

| | | | | | |

| 128 | 200 | 80 | OP.END | MSCP$K_OP_END | End message flag (see note below) |

| 7 | 7 | 7 | OP.SEX | MSCP$K_OP_SEREX | Serious Exception end msg. (see below) |

| | | | | | |

| 64 | 100 | 40 | OP.AVA | MSCP$K_OP_AVATN | AVAILABLE Attention Message |

| 65 | 101 | 41 | OP.DUP | MSCP$K_OP_DUPUN | DUPLICATE UNIT NUMBER Attention Message |

| 66 | 102 | 42 | OP.ACP | MSCP$K_OP_ACPTH | ACCESS PATH Attention Message |

+------+------+------+--------+-----------------+---+

| Note: End message opcodes (also called endcodes) are formed by adding the end message |

| flag to the command opcode. For example, a READ command’s end message contains |

| (using 16 bit mnemonics) the value OP.RD+OP.END in its opcode field. The |

| Invalid Command end message contains just the end message flag (i.e., OP.END) in |

| its opcode field. The Serious Exception end message contains the sum of the end |

| message flag plus the serious exception opcode shown above (i.e., OP.SEX+OP.END) |

| in its opcode field. |

| |

| Command opcode bits 6 and 7 indicate the type of message (command, end, or |

| attention message. Command opcode bits 3 through 5 indicate the command |

| category (immediate, sequential, or non-sequential) and whether or not the |

| command includes a buffer descriptor. |

+---+

Opcode, Flag, and Offset Definitions Page A-3

 Table A-2 Command Modifiers

+------+--------------+--------------------------+--+

| Bit | Bit Mask | Preferred Mnemonics | |

|Number| Octal | Hex. | 16 bit |32 bit (see note)| Command Modifier |

+------+-------+------+--------+-----------------+--+

| Generic Command Modifiers: | | |

| 14 | 40000 | 4000 | MD.CMP | MSCP$x_MD_COMP | Compare |

| 15 |100000 | 8000 | MD.EXP | MSCP$x_MD_EXPRS | Express Request |

| 12 | 10000 | 1000 | MD.ERR | MSCP$x_MD_ERROR | Force Error |

| 9 | 1000 | 200 | MD.SEC | MSCP$x_MD_SECOR | Suppress Error Correction |

| 8 | 400 | 100 | MD.SER | MSCP$x_MD_SEREC | Suppress Error Recovery |

| AVAILABLE Command Modifiers: | |

| 1 | 2 | 2 | MD.ALL | MSCP$x_MD_ALLCD | All Class Drivers |

| 0 | 1 | 1 | MD.SPD | MSCP$x_MD_SPNDW | Spin-down |

| GET UNIT STATUS Command Modifiers: | |

| 0 | 1 | 1 | MD.NXU | MSCP$x_MD_NXUNT | Next Unit |

| ONLINE Command Modifiers: | | |

| 0 | 1 | 1 | MD.RIP | MSCP$x_MD_RIP | Allow Self Destruction |

| 1 | 2 | 2 | MD.IMF | MSCP$x_MD_IGNMF | Ignore Media Format Error |

| ONLINE and SET UNIT CHARACTERISTICS Command Modifiers: |

| 2 | 4 | 4 | MD.SWP | MSCP$x_MD_STWRP | Enable Set Write Protect |

| REPLACE Command Modifiers: | | |

| 0 | 1 | 1 | MD.PRI | MSCP$x_MD_PRIMR | Primary Replacement Block |

+------+-------+------+--------+-----------------+--+

 Table A-3 End Message Flags

+------+--------------+--------------------------+--+

| Bit | Bit Mask | Preferred Mnemonics | |

|Number| Octal | Hex. | 16 bit |32 bit (see note)| End Message Flag |

+------+-------+------+--------+-----------------+--+

| 7 | 200 | 80 | EF.BBR | MSCP$x_EF_BBLKR | Bad Block Reported |

| 6 | 100 | 40 | EF.BBU | MSCP$x_EF_BBLKU | Bad Block Unreported |

| 5 | 40 | 20 | EF.LOG | MSCP$x_EF_ERLOG | Error Log Generated |

+------+-------+------+--------+-----------------+--+

Opcode, Flag, and Offset Definitions Page A-4

 Table A-4 Controller Flags

+------+--------------+--------------------------+--+

| Bit | Bit Mask | Preferred Mnemonics | |

|Number| Octal | Hex. | 16 bit |32 bit (see note)| Controller Flag |

+------+-------+------+--------+-----------------+--+

| 7 | 200 | 80 | CF.ATN | MSCP$x_CF_ATTN | Enable Attention Messages |

| 6 | 100 | 40 | CF.MSC | MSCP$x_CF_MISC | Enable Miscellaneous Error Log Messages|

| 5 | 40 | 20 | CF.OTH | MSCP$x_CF_OTHER | Enable Other Host’s Error Log Messages |

| 4 | 20 | 10 | CF.THS | MSCP$x_CF_THIS | Enable This Host’s Error Log Messages |

| 0 | 1 | 1 | CF.576 | MSCP$x_CF_576 | 576 Byte Sectors |

+------+-------+------+--------+-----------------+--+

 Table A-5 Unit Flags

+------+--------------+--------------------------+--+

| Bit | Bit Mask | Preferred Mnemonics | |

|Number| Octal | Hex. | 16 bit |32 bit (see note)| Unit Flag |

+------+-------+------+--------+-----------------+--+

| 0 | 1 | 1 | UF.CMR | MSCP$x_UF_CMPRD | Compare Reads |

| 1 | 2 | 2 | UF.CMW | MSCP$x_UF_CMPWR | Compare Writes |

| 7 | 200 | 80 | UF.RMV | MSCP$x_UF_RMVBL | Removable Media |

| 13 | 20000 | 2000 | UF.WPH | MSCP$x_UF_WRTPH | Write Protect (hardware) |

| 12 | 10000 | 1000 | UF.WPS | MSCP$x_UF_WRTPS | Write Protect (software) |

| 2 | 4 | 4 | UF.576 | MSCP$x_UF_576 | 576 Byte Sectors |

+------+-------+------+--------+-----------------+--+

Opcode, Flag, and Offset Definitions Page A-5

 Table A-6 Command Message Offsets

+--------------------+--------------------------+-------+---------------------------------+

| Offset Value | Preferred Mnemonics | Field | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Size | Field Description |

+------+------+------+--------+-----------------+-------+---------------------------------+

| Generic Command Message Offsets: | | |

| 0 | 0 | 0 | P.CRF | MSCP$L_CMD_REF | 4 | Command reference number |

| 4 | 4 | 4 | P.UNIT | MSCP$W_UNIT | 2 | Unit number |

| 6 | 6 | 6 | | | 2 | Reserved |

| 8 | 10 | 8 | P.OPCD | MSCP$B_OPCODE | 1 | Opcode |

| 9 | 11 | 9 | | | 1 | Reserved |

| 10 | 12 | A | P.MOD | MSCP$W_MODIFIER | 2 | Modifiers |

| 12 | 14 | C | P.BCNT | MSCP$L_BYTE_CNT | 4 | Byte count |

| 16 | 20 | 10 | P.BUFF | MSCP$Z_BUFFER | 12 | Buffer descriptor |

| 28 | 34 | 1C | P.LBN | MSCP$L_LBN | 4 | Logical Block Number |

| | | | | | | |

| ABORT and GET COMMAND STATUS Command Message Offsets: | |

| 12 | 14 | C | P.OTRF | MSCP$L_OUT_REF | 4 | Outstanding reference number |

| | | | | | | |

| ONLINE and SET UNIT CHARACTERISTICS Command Message Offsets: |

| 12 | 14 | C | | | 2 | Reserved |

| 14 | 16 | E | P.UNFL | MSCP$W_UNT_FLGS | 2 | Unit flags |

| 16 | 20 | 10 | | | 12 | Reserved |

| 28 | 34 | 1C | P.DVPM | MSCP$L_DEV_PARM | 4 | Device dependent parameters |

| | | | | | | |

| REPLACE Command Message Offsets: | | |

| 12 | 14 | C | P.RBN | MSCP$L_RBN | 4 | Replacement block number |

| | | | | | | |

| SET CONTROLLER CHARACTERISTICS Command Message Offsets: |

| 12 | 14 | C | P.VRSN | MSCP$W_VERSION | 2 | MSCP version |

| 14 | 16 | E | P.CNTF | MSCP$W_CNT_FLGS | 2 | Controller flags |

| 16 | 20 | 10 | P.HTMO | MSCP$W_HST_TMO | 2 | Host timeout |

| 18 | 22 | 12 | | | 2 | Reserved |

| 20 | 24 | 14 | P.TIME | MSCP$Q_TIME | 8 | Quad-word time and date |

+------+------+------+--------+-----------------+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-6

 Table A-7 End and Attention Message Offsets

+--------------------+--------------------------+-------+---------------------------------+

| Offset Value | Preferred Mnemonics | Field | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Size | Field Description |

+------+------+------+--------+-----------------+-------+---------------------------------+

| Generic End Message Offsets: | | |

| 0 | 0 | 0 | P.CRF | MSCP$L_CMD_REF | 4 | Command reference number |

| 4 | 4 | 4 | P.UNIT | MSCP$W_UNIT | 2 | Unit number |

| 6 | 6 | 6 | | | 2 | Reserved |

| 8 | 10 | 8 | P.OPCD | MSCP$B_OPCODE | 1 | Opcode (also called endcode) |

| 9 | 11 | 9 | P.FLGS | MSCP$B_FLAGS | 1 | End message flags |

| 10 | 12 | A | P.STS | MSCP$W_STATUS | 2 | Status |

| 12 | 14 | C | P.BCNT | MSCP$L_BYTE_CNT | 4 | Byte count |

| 16 | 20 | 10 | | | 12 | Reserved |

| 28 | 34 | 1C | P.FBBK | MSCP$L_FRST_BAD | 4 | First bad block |

| | | | | | | |

| ABORT and GET COMMAND STATUS End Message Offsets: | |

| 12 | 14 | C | P.OTRF | MSCP$L_OUT_REF | 4 | Outstanding reference number |

| GET COMMAND STATUS End Message Offsets: | | |

| 16 | 20 | 10 | P.CMST | MSCP$L_CMD_STS | 4 | Command status |

| | | | | | | |

| GET UNIT STATUS End Message Offsets: | | |

| 12 | 14 | C | P.MLUN | MSCP$W_MULT_UNT | 2 | Multi-unit code |

| 14 | 16 | E | P.UNFL | MSCP$W_UNT_FLGS | 2 | Unit flags |

| 16 | 20 | 10 | | | 4 | Reserved |

| 20 | 24 | 14 | P.UNTI | MSCP$Q_UNIT_ID | 8 | Unit identifier |

| 28 | 34 | 1C | P.MEDI | MSCP$L_MEDIA_ID | 4 | Media type identifier |

| 32 | 40 | 20 | P.SHUN | MSCP$W_SHDW_UNT | 2 | Shadow unit |

| 36 | 44 | 24 | P.TRCK | MSCP$W_TRACK | 2 | Track size |

| 38 | 46 | 26 | P.GRP | MSCP$W_GROUP | 2 | Group size |

| 40 | 50 | 28 | P.CYL | MSCP$W_CYLINDER | 2 | Cylinder size |

| 42 | 52 | 2A | | | 2 | Reserved |

| 44 | 54 | 2C | P.RCTS | MSCP$W_RCT_SIZE | 2 | RCT table size |

| 46 | 56 | 2E | P.RBNS | MSCP$W_RBNS | 1 | RBNs / track |

| 47 | 57 | 2F | P.RCTC | MSCP$B_RCT_CPYS | 1 | RCT copies |

+------+------+------+--------+-----------------+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-7

 Table A-7 End and Attention Message Offsets (cont.)

+--------------------+--------------------------+-------+---------------------------------+

| Offset Value | Preferred Mnemonics | Field | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Size | Field Description |

+------+------+------+--------+-----------------+-------+---------------------------------+

| ONLINE and SET UNIT CHARACTERISTICS End Message and AVAILABLE Attention Message offsets:|

| 12 | 14 | C | P.MLUN | MSCP$W_MULT_UNT | 2 | Multi-unit code |

| 14 | 16 | E | P.UNFL | MSCP$W_UNT_FLGS | 2 | Unit flags |

| 16 | 20 | 10 | | | 4 | Reserved |

| 20 | 24 | 14 | P.UNTI | MSCP$Q_UNIT_ID | 8 | Unit identifier |

| 28 | 34 | 1C | P.MEDI | MSCP$L_MEDIA_ID | 4 | Media type identifier |

| 36 | 44 | 24 | P.UNSZ | MSCP$L_UNT_SIZE | 4 | Unit size |

| 40 | 50 | 28 | P.VSER | MSCP$_L_VOL_SER | 4 | Volume serial number |

| | | | | | | |

| SET CONTROLLER CHARACTERISTICS End Message Offsets: | |

| 12 | 14 | C | P.VRSN | MSCP$W_VERSION | 2 | MSCP version |

| 14 | 16 | E | P.CNTF | MSCP$W_CNT_FLGS | 2 | Controller flags |

| 16 | 20 | 10 | P.CTMO | MSCP$W_CNT_TMO | 2 | Controller timeout |

| 18 | 22 | 12 | | | 2 | Reserved |

| 20 | 24 | 14 | P.CNTI | MSCP$Q_CNT_ID | 8 | Controller ID |

+------+------+------+--------+-----------------+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-8

 Table A-8 Error Log Message Offsets

+--------------------+--------------------------+-------+---------------------------------+

| Offset Value | Preferred Mnemonics | Field | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Size | Field Description |

+------+------+------+--------+-----------------+-------+---------------------------------+

| Generic Error Log Message Offsets: | | |

| 0 | 0 | 0 | L.CRF | MSLG$L_CMD_REF | 4 | Command reference number |

| 4 | 4 | 4 | L.UNIT | MSLG$W_UNIT | 2 | Unit number |

| 6 | 6 | 6 | L.SEQ | MSLG$W_SEQ_NUM | 2 | Sequence number |

| 8 | 10 | 8 | L.FMT | MSLG$B_FORMAT | 1 | Format |

| 9 | 11 | 9 | L.FLGS | MSLG$B_FLAGS | 1 | Error log message flags |

| 10 | 12 | A | L.EVNT | MSLG$W_EVENT | 2 | Event code |

| 12 | 14 | C | L.CNTI | MSLG$Q_CNT_ID | 8 | Controller ID |

| 20 | 24 | 14 | L.CSVR | MSLG$B_CNT_SVR | 1 | Controller software version |

| 21 | 25 | 15 | L.CHVR | MSLG$B_CNT_HVR | 1 | Controller hardware version |

| 22 | 26 | 16 | L.MLUN | MSLG$W_MULT_UNT | 2 | Multi-unit code |

| 24 | 30 | 18 | L.UNTI | MSLG$Q_UNIT_ID | 8 | Unit ID |

| 32 | 40 | 20 | L.USVR | MSLG$B_UNIT_SVR | 1 | Unit software version |

| 33 | 41 | 21 | L.UHVR | MSLG$B_UNIT_HVR | 1 | Unit hardware version |

| 34 | 42 | 22 | | | 2 | Format dependent |

| 36 | 44 | 24 | L.VSER | MSLG$L_VOL_SER | 4 | Volume serial number |

| | | | | | | |

| Host Memory Access Errors with Bus Address Error Log Message Offsets: |

| 24 | 30 | 18 | L.BADR | MSLG$L_BUS_ADDR | 4 | Bus address |

| | | | | | | |

| Disk Transfer Errors Error Log Message Offsets: | |

| 34 | 42 | 22 | L.LVL | MSLG$B_LEVEL | 1 | Level |

| 35 | 43 | 23 | L.RTRY | MSLG$B_RETRY | 1 | Retry |

| 36 | 44 | 24 | L.VSER | MSLG$L_VOL_SER | 4 | Volume serial number |

| 40 | 50 | 28 | L.HDCD | MSLG$L_HDR_CODE | 4 | Header code |

+------+------+------+--------+-----------------+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-9

 Table A-8 Error Log Message Offsets (cont.)

+--------------------+--------------------------+-------+---------------------------------+

| Offset Value | Preferred Mnemonics | Field | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Size | Field Description |

+------+------+------+--------+-----------------+-------+---------------------------------+

| SDI Errors Error Log Message Offsets: | | |

| 40 | 50 | 28 | L.HDCD | MSLG$L_HDR_CODE | 4 | Header code |

| 44 | 54 | 2C | L.SDI | MSLG$Z_SDI | 12 | SDI information |

+------+------+------+--------+-----------------+-------+---------------------------------+

 Table A-9 Error Log Message Format Codes

+--------------------+--------------------------+---+

| Format Code | Preferred Mnemonics | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Format Description |

+------+------+------+--------+-----------------+---+

| 0 | 0 | 0 | FM.CNT | MSLG$K_CNT_ERR | Controller Errors |

| 1 | 1 | 1 | FM.BAD | MSLG$K_BUS_ADDR | Host Memory Access Errors with Bus Addr.|

| 2 | 2 | 2 | FM.DSK | MSLG$K_DISK_TRN | Disk Transfer Errors |

| 3 | 3 | 3 | FM.SDI | MSLG$K_SDI | SDI Errors |

+------+------+------+--------+-----------------+---+

 Table A-10 Error Log Message Flags

+------+--------------+--------------------------+--+

| Bit | Bit Mask | Preferred Mnemonics | |

|Number| Octal | Hex. | 16 bit |32 bit (see note)| Format Description |

+------+-------+------+--------+-----------------+--+

| 7 | 200 | 80 | LF.SUC | MSLG$x_LF_SUCC | Operation Successful |

| 6 | 100 | 40 | LF.CON | MSLG$x_LF_CONT | Operation Continuing |

| 0 | 1 | 1 | LF.SNR | MSLG$x_LF_SQNRS | Sequence Number Reset |

+------+-------+------+--------+-----------------+--+

 APPENDIX B

 STATUS AND EVENT CODE DEFINITIONS

Notes: 1. The combination of a status or event code with a sub-code should be expressed

 (assuming 16 bit symbols) as: (subcode*ST.SUB)+code

 2. In the sub-code tables, an asterisk in the "EV" column indicates that the code

 and sub-code may be used as an event code. An asterisk in the "ST" column

 indicates that the code and sub-code may be used as a status code.

Status and Event Code Definitions Page B-2

 Table B-1 Status and Event Codes

+--------------------+--------------------------+---+

| Value | Preferred Mnemonics | |

| Dec. | Oct. | Hex. | 16 bit | 32 bit | Status or Event Code |

+------+------+------+--------+-----------------+---+

| 31 | 37 | 1F | ST.MSK | MSCP$M_ST_MASK | Status / event code mask |

| 32 | 40 | 20 | ST.SUB | MSCP$K_ST_SBCOD | Sub-code multiplier |

| | | | | | |

| 0 | 0 | 0 | ST.SUC | MSCP$K_ST_SUCC | Success |

| 1 | 1 | 1 | ST.CMD | MSCP$K_ST_ICMD | Invalid Command |

| 2 | 2 | 2 | ST.ABO | MSCP$K_ST_ABRTD | Command Aborted |

| 3 | 3 | 3 | ST.OFL | MSCP$K_ST_OFFLN | Unit-Offline |

| 4 | 4 | 4 | ST.AVL | MSCP$K_ST_AVLBL | Unit-Available |

| 5 | 5 | 5 | ST.MFE | MSCP$K_ST_MFMTE | Media Format Error |

| 6 | 6 | 6 | ST.WPR | MSCP$K_ST_WRTPR | Write Protected |

| 7 | 7 | 7 | ST.CMP | MSCP$K_ST_COMP | Compare Error |

| 8 | 0 | 8 | ST.DAT | MSCP$K_ST_DATA | Data Error |

| 9 | 11 | 9 | ST.HST | MSCP$K_ST_HSTBF | Host Buffer Access Error |

| 10 | 12 | A | ST.CNT | MSCP$K_ST_CNTLR | Controller Error |

| 11 | 13 | B | ST.DRV | MSCP$K_ST_DRIVE | Drive Error |

| 31 | 37 | 1F | ST.DIA | MSCP$K_ST_DIAG | Message from an internal diagnostic |

+------+------+------+--------+-----------------+---+

Status and Event Code Definitions Page B-3

 Table B-2 Standard Status and Event Sub-code Values

+------+---------------------+-+-+--+

| Sub- | Code + Sub-code |E|S| |

| code | Dec. | Oct. | Hex. |V|T| Status or Event Sub-Code |

+------+---------------------+-+-+--+

| "Success" sub-code values: | | | |

| 0 | 0 | 0 | 0 | |*| Normal |

| 1 | 32 | 40 | 20 | |*| Spin-down Ignored |

| 2 | 64 | 100 | 40 | |*| Still Connected |

| 4 | 128 | 200 | 80 | |*| Duplicate Unit Number |

| 8 | 256 | 400 | 100 | |*| Already Online |

| 16 | 512 | 1000 | 200 | |*| Still Online |

| | | | | | | |

| "Invalid Command" sub-code values: |

| 0 | 1 | 1 | 1 | |*| Invalid Message Length |

| many | | | | |*| Other "Invalid Command" sub-codes values should be |

| | | | | | | referenced as follows (note that this is combined with |

| | | | | | | the status code): |

| | | | | | | |

| | | | | | | offset*256.+code |

| | | | | | | |

| | | | | | | where "offset" is the command message offset symbol |

| | | | | | | for the field in error and "code" is the symbol for |

| | | | | | | the "Invalid Command" status code. |

| | | | | | | |

| "Command Aborted" sub-code values: |

| | | | | |*| Sub-codes are not used. |

| | | | | | | |

| "Unit-Offline" sub-code values: |

| 0 | 3 | 3 | 3 | |*| Unit unknown or online to another controller. |

| 1 | 35 | 43 | 23 | |*| No volume mounted or drive disabled via RUN/STOP switch|

| | | | | | | (unit is in known substate of Unit-Offline) |

| 2 | 67 | 103 | 43 | |*| Unit is inoperative |

| 4 | 131 | 203 | 83 | |*| Duplicate unit number |

| 8 | 259 | 403 | 103 | |*| Unit disabled by field service or internal diagnostic |

+------+---------------------+-+-+--+

Status and Event Code Definitions Page B-4

 Table B-2 Standard Status and Event Sub-code Values (cont.)

+------+---------------------+-+-+--+

| Sub- | Code + Sub-code |E|S| |

| code | Dec. | Oct. | Hex. |V|T| Status or Event Sub-Code |

+------+------+-------+------+-+-+--+

| "Unit-Available" sub-code values: |

| | | | | |*| Sub-codes are not used. |

| | | | | | | |

| "Media Format Error" sub-code values: |

| many | | | |*|*| See Table B-3 |

| | | | | | | |

| "Write Protected" sub-code values: |

| 256 | 8198 | 20006 | 2006 | |*| Unit is Hardware Write Protected |

| 128 | 4102 | 10006 | 1006 | |*| Unit is Software Write Protected |

| | | | | | | |

| "Compare Error" sub-code values: |

| | | | | |*| Sub-codes are not used. |

| | | | | | | |

| "Data Error" sub-code values: | |

| 0 | 8 | 10 | 8 | |*| Sector was written with "Force Error" modifier |

| many | | | |*|*| See Table B-3 |

| | | | | | | |

| "Host Buffer Access Error" sub-code values: |

| many | | | |*|*| See Table B-3 |

| | | | | | | |

| "Controller Error" sub-code values: |

| 0 | 10 | 12 | A | | | Reserved for command timeout / retry limit exceeded. |

| many | | | |*|*| See Table B-3 |

| | | | | | | |

| "Drive Error" sub-code values: |

| many | | | |*|*| See Table B-3 |

| | | | | | | |

| "Message from an internal diagnostic" sub-code values: |

| many | | | |*| | See Table B-3 |

+------+------+-------+------+-+-+--+

Status and Event Code Definitions Page B-5

 Table B-3 Non-Standard Status and Event Sub-code Values

 (Use of these sub-codes is controller or drive type dependent)

+------+---------------------+-+-+--+

| Sub- | Code + Sub-code |E|S| |

| code | Dec. | Oct. | Hex. |V|T| Status or Event Sub-Code |

+------+------+-------+------+-+-+--+

| "Media Format Error" sub-code values: |

| 1 | 37 | 45 | 25 | |*| FCT unreadable -- EDC Error |

| 2 | 69 | 105 | 45 | |*| FCT unreadable -- Invalid sector header |

| 3 | 101 | 145 | 65 | |*| FCT unreadable -- Data sync timeout |

| 5 | 165 | 245 | A5 | |*| Disk isn’t formatted with 512 byte sectors |

| 6 | 197 | 305 | C5 | |*| Disk isn’t formatted or FCT corrupted |

| 7 | 229 | 345 | E5 | |*| FCT unreadable -- Uncorrectable ECC Error |

| | | | | | | |

| "Data Error" sub-code values: | |

| 2 | 72 | 110 | 48 |*|*| Header compare error (valid header not found) |

| 3 | 104 | 150 | 68 |*|*| Data Sync not found (Data Sync timeout) |

| 7 | 232 | 350 | E8 |*|*| Uncorrectable ECC Error |

| 8 | 264 | 410 | 108 |*| | One Symbol ECC Error |

| 9 | 296 | 450 | 128 |*| | Two Symbol ECC Error |

| 10 | 328 | 510 | 148 |*| | Three Symbol ECC Error |

| 11 | 360 | 550 | 168 |*| | Four Symbol ECC Error |

| 12 | 392 | 610 | 188 |*| | Five Symbol ECC Error |

| 13 | 424 | 650 | 1A8 |*| | Six Symbol ECC Error |

| 14 | 456 | 710 | 1C8 |*| | Seven Symbol ECC Error |

| 15 | 488 | 750 | 1E8 |*| | Eight Symbol ECC Error |

| | | | | | | |

| "Host Buffer Access Error" sub-code values: |

| 1 | 41 | 51 | 29 | |*| Odd transfer address |

| 2 | 73 | 111 | 49 | |*| Odd byte count |

| 3 | 105 | 151 | 69 | |*| Non-existent memory error |

| 4 | 137 | 211 | 89 | |*| Host memory parity error |

+------+------+-------+------+-+-+--+

Status and Event Code Definitions Page B-6

 Table B-3 Non-Standard Status and Event Sub-code Values (cont.)

 (Use of these sub-codes is controller or drive type dependent)

+------+---------------------+-+-+--+

| Sub- | Code + Sub-code |E|S| |

| code | Dec. | Oct. | Hex. |V|T| Status or Event Sub-Code |

+------+------+-------+------+-+-+--+

| "Controller Error" sub-code values: |

| 1 | 42 | 52 | 2A |*|*| SERDES overrun error |

| 2 | 74 | 112 | 4A |*|*| EDC Error |

| 3 | 106 | 152 | 6A |*|*| Inconsistent internal data structure. |

| | | | | | | |

| "Drive Error" sub-code values: |

| 1 | 43 | 53 | 2B |*|*| SDI command timed out (no response or seek incomplete) |

| 2 | 75 | 113 | 4B |*|*| Controller detected transmission or protocol error |

| 3 | 107 | 153 | 6B |*|*| Positioner error (mis-seek) |

| 4 | 139 | 213 | 8B |*|*| Lost read/write ready during or between transfers |

| 5 | 171 | 253 | AB |*|*| Drive clock dropout |

| 6 | 203 | 313 | CB |*|*| Lost receiver ready between sectors |

| 7 | 235 | 353 | EB |*|*| Drive detected error. |

| 8 | 267 | 413 | 10B |*|*| Controller detected pulse or state parity error |

+------+------+-------+------+-+-+--+

 APPENDIX C

 CONTROLLER, UNIT, AND MEDIA TYPE IDENTIFIER VALUES

Notes: 1. Values for new products must be added to this appendix via an ECO to this

 specification.

 Table C-1 Controller and Unit Identifier "Class" Byte Values

 +----------+-----------------------------------+

 |Class Byte| |

 | (decimal)| Subsystem Type |

 +----------+-----------------------------------+

 | 0 | reserved -- must not be assigned |

 | 1 | Mass storage controllers |

 | 2 | Disk class devices |

 +----------+-----------------------------------+

Controller, Unit, and Media Type Identifier Values Page C-2

 Table C-2 Mass Storage Controller "Model" Byte Values

 +----------+-----------------------------------+

 |Model Byte| |

 | (decimal)| Controller Type |

 +----------+-----------------------------------+

 | 0 | reserved -- must not be assigned |

 | 2 | UDA50 |

 +----------+-----------------------------------+

 Table C-3 Disk Class Devices Identifier Values

+----------+---------+-------+---------------------------+--------------------------------+

|Model Byte| Device | Media | Media Type Identifier | |

| (decimal)|Type Name| Name | octal | hex | Device |

+----------+---------+-------+---------------+-----------+--------------------------------+

| 0 | Reserved -- must not be assigned. |

| 1 | DU | RA80 | 022544,010120 | 2564,1050 | RA80 fixed disk drive. |

+----------+---------+-------+---------------+-----------+--------------------------------+

+---------+-------+---------------------------+--------------------------------+

| Device | Media | Media Type Identifier | Drive/Media |

|Type Name| Name +---------------+-----------+ Characteristics |

| | | octal | hex | |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD51 | 022544,040063 | 2564,4033 | 10 MB, 5.25", fixed, full |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RX50 | 022545,100062 | 2565,8032 | 400 KB, 5.25", single-sided |

| | | | | 96 TPI floppy, full height, |

| | | | | dual drives (800 KB total) |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD52 | 022544,040064 | 2564,4034 | 33 MB, 5.25", fixed, full |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD53 | 022544,040065 | 2564,4035 | 71 MB, 5.25", fixed, full |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RX33* | 022545,100041 | 2565,8021 | 1200 KB, 5.25", double-sided |

| | | | | 96 TPI floppy, half height, |

| | | | | (also accepts RX50 media) |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD31 | 022544,040037 | 2564,401F | 20 MB, 5.25", fixed, half |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD54* | 022544,040066 | 2564,4036 | 160 MB, 5.25", fixed, full |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RD32* | 022544,040040 | 2564,4020 | 40 MB, 5.25", fixed, half |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

| DU | RA70* | 022544,010106 | 2564,1046 | 280 MB, 5.25", fixed, full |

| | | | | height |

+---------+-------+---------------+-----------+--------------------------------+

 APPENDIX D

 BUFFER DESCRIPTOR FORMATS

The information in this Appendix is NOT a formal part of MSCP.

The formal specification for buffer descriptors is in the

individual communications mechanism specifications. This

information is summarized here in order to provide a convenient

reference for all buffer descriptors in a single document.

The format of the buffer descriptor used with the Unibus and

Q-bus is as follows:

 31 0

 +-------+-----------------------+

 | chan |buffer physical address|

 +-------+-----------------------+

 | reserved |

 +-------------------------------+

 | reserved |

 +-------------------------------+

In order to accommodate VAX-11/780 UBAs, it is necessary to

include the UBA channel number so that controllers can request

UBA purges.

	MSCP Basic Disk Functions Manual
	Chapter 1 Introduction
	1.1 Overview of MSCP Subsystem
	1.2 Purpose
	1.3 Method of Presentation
	1.4 Scope

	Chapter 2 Terminology
	Chapter 3 Class Driver / MSCP Server Communications
	3.1 Connection
	3.2 Flow Control
	3.3 Class Driver Responsibilities
	3.4 MSCP Server Responsibilities

	Chapter 4 Algorithms and Usage Rules
	4.1 Controller Status
	4.2 Controls and Indicators
	4.3 Unit States
	4.4 Unit Numbers
	4.5 Command Categories and Execution Order
	4.6 Class Driver / MSCP Server Synchronization
	4.7 Class Driver Error Recovery
	4.8 (This section deliberately omitted)
	4.9 Host Access Timeouts
	4.10 Command Timeouts
	4.11 Disk Geometry and Format
	4.12 Bad Block Replacement
	4.13 Write Protection
	4.14 Compare Operations
	4.15 Multi-Unit Drives and Formatters
	4.16 Controller and Unit Identifiers
	4.17 Media Type Identifiers

	Chapter 5 MSCP Control Message Formats
	5.1 Generic Control Message Format
	5.2 Reserved and Undefined Fields
	5.3 Transfer Command Message Format
	5.4 Command Modifiers
	5.5 End Message Format
	5.6 Status Codes
	5.7 Unit Flags
	5.8 Controller Flags

	Chapter 6 Minimal Disk MSCP Subset
	6.1 (This section deliberately omitted)
	6.2 (This section deliberately omitted)
	6.3 ABORT Command
	6.4 ACCESS Command
	6.5 AVAILABLE Command
	6.6 (This section deliberately omitted)
	6.7 COMPARE HOST DATA Command
	6.8 DETERMINE ACCESS PATHS Command
	6.9 ERASE Command
	6.10 (This section deliberately omitted)
	6.11 GET COMMAND STATUS Command
	6.12 GET UNIT STATUS Command
	6.13 ONLINE Command
	6.14 READ Command
	6.15 REPLACE Command
	6.16 SET CONTROLLER CHARACTERISTICS Command
	6.17 SET UNIT CHARACTERISTICS Command
	6.18 WRITE Command
	6.19 Invalid Command End Message
	6.20 ACCESS PATH Attention Message
	6.21 AVAILABLE Attention Message
	6.22 DUPLICATE UNIT NUMBER Attention Message

	Chapter 7 Disk MSCP Options
	Chapter 8 MSCP Error Log Message Formats
	8.1 Introduction
	8.2 Generic Error Log Message Format
	8.3 Controller Errors
	8.4 Host Memory Access Errors with Bus Address
	8.5 Disk Transfer Errors
	8.6 SDI Errors

	Appendix A Opcode, Flag, and Offset Definitions
	Appendix B Status and Event Code Definitions
	Appendix C Controller, Unit, and Media Type Identifier Values
	Appendix D Buffer Descriptor Formats

